PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Article Sidebar
Open full text
Issue Vol. 10 No. 3 (2020)
-
THE DIAGNOSTIC OF TWO-PHASE SEPARATION PROCESS USING DIGITAL IMAGE SEGMENTATION ALGORITHMS
Michał Łukiański, Radoslaw Wajman5-8
-
ANALYSES OF SKIN LESION AREAS AFTER THRESHOLDING
Magdalena Michalska9-12
-
THE INFLUENCE OF THE PRINCIPAL COMPONENT ANALYSIS OF TEXTURE FEATURES ON THE CLASSIFICATION QUALITY OF SPONGE TISSUE IMAGES
Róża Dzierżak13-16
-
SPATIAL PARAMETERS OF STATOGRAMS IN DIAGNOSING PATHOLOGIES OF THE HUMAN LOCOMOTOR SYSTEM
Sergii Pavlov, Yurii Bezsmertnyi, Stanislav Iaremyn, Halyna Bezsmertna17-21
-
INFOCOMMUNICATION TECHNOLOGIES FOR ASSESSMENT AND PREDICTION OF ENVIRONMENT IMPACT ON HUMAN HEALTH
Oksana Boyko, Nataliya Dorosh, Irena Yermakova, Oleh Dorosh, Żaklin Grądz22-25
-
USING BRAIN-COMPUTER INTERFACE TECHNOLOGY AS A CONTROLLER IN VIDEO GAMES
Błażej Zając, Szczepan Paszkiel26-31
-
PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE
Jakub Gęca32-35
-
SOLVING THE FAILING TRACK MARKER PROBLEM IN AUTOMATED GUIDED VEHICLE SYSTEMS – A CASE STUDY
Tomasz Lewowski36-43
-
BAPV SYSTEM MODELING FOR THE SINGLE-FAMILY HOUSE: A CASE STUDY
Ewelina Krawczak44-47
-
ANALYSIS OF HEAT TRANSFER IN BUILDING PARTITIONS WITH THE USE OF COMPUTATIONAL FLUID DYNAMICS TOOLS
Arkadiusz Urzędowski, Joanna Styczeń, Magdalena Paśnikowska-Łukaszuk48-51
-
SELECTED ASPECTS IN THE ANALYSIS OF THE COMBUSTION PROCESS USING WAVELET TRANSFORM
Żaklin Grądz52-55
-
MANAGEMENT OF POWER IN ASPECTS OF ENERGY PRODUCTION PRICES FOR FUEL ENERGY GENERATORS
Konrad Zuchora56-59
-
A REVIEW OF VOLTAGE CONTROL STRATEGIES FOR LOW-VOLTAGE NETWORKS WITH HIGH PENETRATION OF DISTRIBUTED GENERATION
Klara Janiga60-65
-
DISASSEMBLABLE VACUUM CHAMBER AS AN INNOVATIVE TEST STAND DESIGNED FOR RESEARCH ON IMPROVING THE OPERATIONAL PARAMETERS OF POWER SWITCHING APPARATUS
Michał Lech66-69
-
ELECTROMAGNETIC COMPATIBILITY TESTING OF ELECTRIC VEHICLES AND THEIR CHARGERS
Aleksander Chudy, Henryka Danuta Stryczewska70-73
-
FREQUENCY MODULATION APPROACH BASED ON SPLIT-RING RESONATOR LOADED BY VARACTOR DIODE
Dmytro Vovchuk, Serhii Haliuk, Pavlo Robulets, Leonid Politanskyi74-77
-
INCREASING RADIATION RESISTANCE OF MEMORY DEVICES BASED ON AMORPHOUS SEMICONDUCTORS
Vasyl Kychak, Ivan Slobodian, Victor Vovk78-81
-
TORQUE MEASURING CHANNELS: DYNAMIC AND STATIC METROLOGICAL CHARACTERISTICS
Vasyl Kukharchuk, Valerii Hraniak, Samoil Katsyv, Volodymyr Holodyuk82-85
-
EXPERIMENTAL STUDY OF NATURAL GAS HUMIDITY CONTROL DEVICE
Yosyp Bilynsky, Oksana Horodetska, Svitlana Sirenko, Dmytro Novytskyi86-90
-
ELLIPTIC-CURVE CRYPTOGRAPHY (ECC) AND ARGON2 ALGORITHM IN PHP USING OPENSSL AND SODIUM LIBRARIES
Mariusz Duka91-94
-
OPTIMIZATION IN VERY LARGE DATABASES BY PARTITIONING TABLES
Piotr Bednarczuk95-98
-
ANALISYS OF THE INFLUENCE OF GLUE JOINTS ON THE MEASUREMENT OF PHYSICAL PROPERTIES OF STRUCTURAL ELEMENTS USING FIBER BRAGG GRATING
Tomasz Zieliński, Łukasz Zychowicz99-102
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry.
Keywords:
References
Binding A., et al.: Machine Learning Predictive Maintenance on Data in the Wild. IEEE 5th World Forum on Internet of Things (Wf-Iot), 2019, 507–512. DOI: https://doi.org/10.1109/WF-IoT.2019.8767312
Burnaev E.: On Construction of Early Warning Systems for Predictive Maintenance in Aerospace Industry. Journal of Communications Technology and Electronics 64/2019, 1473–1484, [https://doi.org/10.1134/S1064226919120027]. DOI: https://doi.org/10.1134/S1064226919120027
Campos J. R., et al.: Exploratory Study of Machine Learning Techniques for Supporting Failure Prediction. 14th European Dependable Computing Conference (EDCC), 2018, 9–16, [https://doi.org/10.1109/EDCC.2018.00014]. DOI: https://doi.org/10.1109/EDCC.2018.00014
Carvalho T.P., et al.: A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Computers & Industrial Engineering 137/2019, 106024, [https://doi.org/10.1016/j.cie.2019.106024]. DOI: https://doi.org/10.1016/j.cie.2019.106024
Chigurupati A., et al.: Predicting Hardware Failure Using Machine Learning. 2016 Annual Reliability and Maintainability Symposium (RAMS), 2016, 1–6, [https://doi.org/10.1109/RAMS.2016.7448033]. DOI: https://doi.org/10.1109/RAMS.2016.7448033
Cho S., et al.: A Hybrid Machine Learning Approach for Predictive Maintenance in Smart Factories of the Future. Advances in Production Management Systems: Smart Manufacturing for Industry 4.0 – APMS 2018, 536/2018, 311–317, [https://doi.org/10.1007/978-3-319-99707-0_39]. DOI: https://doi.org/10.1007/978-3-319-99707-0_39
Corazza A., et al.: A Machine Learning Approach for Predictive Maintenance for Mobile Phones Service Providers. Advances on P2P, Parallel, Grid, Cloud and Internet Computing 1/2017, 717–726, [https://doi.org/10.1007/978-3-319-49109–7_69]. DOI: https://doi.org/10.1007/978-3-319-49109-7_69
Dzierżak R.: Comparison of the Influence of Standardization and Normalization of Data on the Effectiveness of Spongy Tissue Texture Classification. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9/2019, 66–69, [https://doi.org/10.35784/iapgos.62]. DOI: https://doi.org/10.35784/iapgos.62
Garcia S., et al.: Data Preprocessing in Data Mining. Data Preprocessing in Data Mining 72/2015, 1–320, [https://doi.org/10.1007/978-3-319-10247-4]. DOI: https://doi.org/10.1007/978-3-319-10247-4
Gutschi C., et al.: Log-Based Predictive Maintenance in Discrete Parts Manufacturing. 12th Cirp Conference on Intelligent Computation in Manufacturing Eng. 79/2019, 528–533,[https://doi.org/10.1016/j.procir.2019.02.098]. DOI: https://doi.org/10.1016/j.procir.2019.02.098
Jiang R., et al.: Failure Prediction Method of Gearbox Based on Bp Neural Network with Genetic Optimization Algorithm. International Conference on Renewable Power Generation – RPG 2015, 2015, 1–3, [https://doi.org/10.1049/cp.2015.0444]. DOI: https://doi.org/10.1049/cp.2015.0444
Kanawaday A., Sane A.: Machine Learning for Predictive Maintenance of Industrial Machines Using Iot Sensor Data. 2017, 87–90, [https://doi.org/10.1109/ICSESS.2017.8342870]. DOI: https://doi.org/10.1109/ICSESS.2017.8342870
Khalil M.: Failure Prediction of Pv Inverters under Operational Stresses. IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2019, 1–5, [https://doi.org/10.1109/EEEIC.2019.8783241]. DOI: https://doi.org/10.1109/EEEIC.2019.8783241
Kolokas N., et al.: Forecasting Faults of Industrial Equipment Using Machine Learning Classifiers. 2018 Innovations in Intelligent Systems and Applications (Inista), 2018, 6.
Korvesis P., et al.: Predictive Maintenance in Aviation: Failure Prediction from Post-Flight Reports. IEEE 34th International Conference on Data Engineering (ICDE), 2018, 1414–1422, [https://doi.org/10.1109/ICDE.2018.00160]. DOI: https://doi.org/10.1109/ICDE.2018.00160
Lemaître G., Nogueira F., Aridas C.: Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. 18/2016.
Masani K.I., et al.: Predictive Maintenance and Monitoring of Industrial Machine Using Machine Learning. Scalable Computing-Practice and Experience 20(4)/2019, 663–668, [https://doi.org/10.12694/scpe.v20i4.1585]. DOI: https://doi.org/10.12694/scpe.v20i4.1585
Mishra K., et al.: Failure Prediction Model for Predictive Maintenance. 7th IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 2018, 72–75, [https://doi.org/10.1109/ccem.2018.00019]. DOI: https://doi.org/10.1109/CCEM.2018.00019
Parisi L., Ravi Chandran N.: Genetic Algorithms and Unsupervised Machine Learning for Predicting Robotic Manipulation Failures for Force-Sensitive Tasks. 4th International Conference on Control, Automation and Robotics (ICCAR), 2018, 22–25, [https://doi.org/10.1109/ICCAR.2018.8384638]. DOI: https://doi.org/10.1109/ICCAR.2018.8384638
Rosenblatt F.: The Perceptron, a Perceiving and Recognizing Automaton Project Para. Cornell Aeronautical Laboratory, 1957. Report: Cornell Aeronautical Laboratory.
Rymarczyk T., et al.: Analysis of Data from Measuring Sensors for Prediction in Production Process Control Systems. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(4)/2019, [https://doi.org/10.35784/iapgos.570]. DOI: https://doi.org/10.35784/iapgos.570
Schaub M.: Data-Based Prediction of Soot Emissions for Transient Engine Operation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(4)/2019, [https://doi.org/10.35784/iapgos.29]. DOI: https://doi.org/10.35784/iapgos.29
Suchatpong T., Bhumkittipich K.: Hard Disk Drive Failure Mode Prediction Based on Industrial Standard Using Decision Tree Learning. 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014, 1–4, [https://doi.org/10.1109/ECTICon.2014.6839839]. DOI: https://doi.org/10.1109/ECTICon.2014.6839839
Susto G.A., et al.: Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics 11(3)/2015, 812–820, [https://doi.org/10.1109/TII.2014.2349359]. DOI: https://doi.org/10.1109/TII.2014.2349359
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Implementation-Guide-Data-Sets-1 (available: 24.04.2020).
Article Details
Abstract views: 1085
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
