MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Miloslav Steinbauer
Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-1358-6974
Roman Pernica
Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
https://orcid.org/0000-0002-6672-0137
Jiri Zukal
Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-5550-587X
Radim Kadlec
Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-3252-4859
Tibor Bachorec
Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-6249-1509
Pavel Fiala
fialap@feec.vutbr.czBrno University of Technology, SIX Research Center (Czechia)
http://orcid.org/0000-0002-7203-9903
Abstract
We discuss the numerical modeling of electromagnetic, carbon-based periodic structures, including graphene, graphane, graphite, and graphyne. The materials are suitable for sub-micron sensors, electric lines, and other applications, such as those within biomedicine, photonics, nano- and optoelectronics; in addition to these domains and branches, the applicability extends into, for example, microscopic solutions for modern SMART elements. The proposed classic and hybrid numerical models are based on analyzing a periodic structure with a high repeatability, and they exploit the concept of a carbon structure having its fundamental dimension in nanometers. The models can simulate harmonic and transient processes; are capable of evaluating the actual random motion of an electric charge as a source of spurious signals; and consider the parameters of harmonic signal propagation along the structure. The results obtained from the analysis are utilizable for the design of sensing devices based on carbon periodic structures and were employed in experiments with a plasma generator. The aim is to provide a broader overview of specialized nanostructural modeling, or, more concretely, to outline a model utilizable in evaluating the propagation of a signal along a structure’s surface.
Keywords:
nanomaterial, graphene, graphite, experimental modeling, hydrogen bond, periodic structureReferences
ANSYS, Ansys Multiphysics Manuals, 2020, https://www.ansys.com/.
Google Scholar
Bartusek K., Drexler P., Fiala P., et al.: Magnetoinductive Lens for Experimental Mid-field MR Tomograph. Progress in Electromagnetics Research Symposium Proceedings 1&2, 2010, 1047–1050.
Google Scholar
Bina M.: The coherent interaction between matter and radiation. The European Physical Journal Special Topics 203(1), 2012, 163–183.
DOI: https://doi.org/10.1140/epjst/e2012-01541-3
Google Scholar
Castro Neto A.H., Guinea F., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Reviews of modern physics 81, 2009, 109.
DOI: https://doi.org/10.1103/RevModPhys.81.109
Google Scholar
Chao Yan, Kwang-Seop Kim, Seoung-Ki Lee, Sang-Hoon Bae, Byung Hee Hong, Jae-Hyun Kim, Hak-Joo Lee, Jong-Hyun Ahn: Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano 6(3), 2012, 2096–2103.
DOI: https://doi.org/10.1021/nn203923n
Google Scholar
Drexler P., Fiala P., Dohnal P., Marcon P.: The Electromagnetic Properties of a Multilayered Resonant Structure Formed from Inorganic Elements. Progress in Electromagnetics Research Symposium 2018, 2176–2183 [https://doi.org/10.23919/PIERS.2018.8597705].
DOI: https://doi.org/10.23919/PIERS.2018.8597705
Google Scholar
Drexler P., Fiala P., Dohnal P., Marcoň P.: The electromagnetic properties of a resonant structure formed from inorganic or organic elements. Progress in Electromagnetics Research Symposium 2017, 970–974 [https://doi.org/10.1109/PIERS-FALL.2017.8293274].
DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293274
Google Scholar
Drexler P., Nespor D., Kadlec R., Cap M.: Numerical Analysis of Metallic Periodic Structures in THz Region. Progress in Electromagnetics Research Symposium, 2016, 2730–2733.
DOI: https://doi.org/10.1109/PIERS.2016.7735111
Google Scholar
Farhana Faisal T., Islam A., Jouini M. S., Devarapalli R. S., Jouiad M., Sassi M.: Numerical prediction of carbonate elastic properties based on multi-scale imaging. Geomechanics for Energy and the Environment 20, 2019, 100125 [https://doi.org/10.1016/j.gete.2019.100125].
DOI: https://doi.org/10.1016/j.gete.2019.100125
Google Scholar
Fiala P., Bartušek K., Bachorec T., Dohnal P.: An Interference EMG Model of Selected Water Samples. Progress in Electromagnetics Research Symposium 2018, 775–781 [https://doi.org/10.23919/PIERS.2018.8597958].
DOI: https://doi.org/10.23919/PIERS.2018.8597958
Google Scholar
Fiala P., Bartušek K., Dědková J., Dohnal P.: EMG field analysis in dynamic microscopic/nanoscopic models of matter. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(1), 2019, 4–10.
DOI: https://doi.org/10.5604/01.3001.0013.0877
Google Scholar
Fiala P., Drexler P., Nespor D.: A resonance-based solar element: a numerical model and micro/nano technology application. Proc. SPIE 8763, 2013, 87632A1-87632A7.
DOI: https://doi.org/10.1117/12.2015111
Google Scholar
Fiala P., Drexler P., Nespor D.: Principal tests and verification of a resonance-based solar harvester utilizing micro/nano technology. Microsystem Technologies 20(4-5), 2014, 845–860.
DOI: https://doi.org/10.1007/s00542-013-2063-x
Google Scholar
Fiala P., Drexler P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems 18(7-8), 2012, 1181–1192.
DOI: https://doi.org/10.1007/s00542-012-1474-4
Google Scholar
Fiala P., Friedl M.: Application of an electromagnetic numerical model in accurate measurement of high velocities. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 5(3), 2015, 3–10.
Google Scholar
Fiala P., Gescheidtova E., Jirku T.: Tuned Structures for Special THz Applications. Progress in Electromagnetics Research Symposium (PIERS 2009) 2009, 151–155.
Google Scholar
Fiala P., Kadlec R., Drexler P.: Modeling multilayered samples of inorganic and organic speckle structures. Progress in Electromagnetics Research Symposium, 2019, 2646–2651 [https://doi.org/10.1109/PIERS-Spring46901.2019.9017266].
DOI: https://doi.org/10.1109/PIERS-Spring46901.2019.9017266
Google Scholar
Fiala P., Machac J., Polivka J.: Microwave noise field behaves like white light. Progress In Electromagnetics Research 111(1), 2011, 311–330.
DOI: https://doi.org/10.2528/PIER10041304
Google Scholar
Fiala P., Maxa J.: Numerical Models of a Multilayered Graphene Structure, Progress in Electromagnetics Research Symposium (PIERS-Toyama) 2018, 527–532 [https://doi.org/10.23919/PIERS.2018.8598000].
DOI: https://doi.org/10.23919/PIERS.2018.8598000
Google Scholar
Fiala P., Nespor D., Drexler P., Steinbauer M.: Numerical Model of a Nanoelectric Line from a Graphene Component. Microsystem Technologies 1, 2016, 1–18.
Google Scholar
Fiala P., Szabó Z., Friedl M.: EMHD models respecting relativistic processes of trivial geometries. Progress in Electromagnetics Research Symposium, 2011, 95–98.
Google Scholar
Fiala P., Werner P., Osmera P., Dohnal P.: Using a multiscale toroidal element to model a hydrogen atom. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017, 956–960.
DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293271
Google Scholar
Fiala P., Werner P., Osmera P., Gescheidtova E., Drexler P., Kriz T.: Periodical structures and multiscale modelling. Progress in Electromagnetics Research Symposium, 2017, 1698–1703.
DOI: https://doi.org/10.1109/PIERS.2017.8262022
Google Scholar
Geim A.K., Novoselov K.S.: The rise of graphene. Nature Materials 6(3), 2009, 183-91.
DOI: https://doi.org/10.1038/nmat1849
Google Scholar
Haňka L.: Teorie elektromagnetického pole, paperback SNTL. Praha 1971.
Google Scholar
Heyrovska R., Narayan S.: Structures of Molecules at the Atomic Level: Caffeine and Related Compounds. Philippine Journal of Science 140(2), 2008, 119–124.
Google Scholar
Heyrovska R.: Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon. General Physics, 2008, arXiv:0804.4086
Google Scholar
Heyrovska R.: Methane, benzene and graphene, internal research report. 2008 http://arxiv.org/ftp/arxiv/papers/0804/0804.4086.pdf .
Google Scholar
Holmes J., Ishimaru A.: Relativistic communications effects associated with moving space antennas. IEEE Transactions on Antennas and Propagation 17(4), 1969, 484–488.
DOI: https://doi.org/10.1109/TAP.1969.1139473
Google Scholar
Hui F., Pan Ch., Shi Y., Ji Y., Grustan-Gutierrez E., Lanza M.: On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering 163, 2016, 119–133.
DOI: https://doi.org/10.1016/j.mee.2016.06.015
Google Scholar
Jović D., Jaćević V., Kuča K., Borišev I., Mrdjanovic J., Petrovic D., Djordjevic A.: The puzzling potential of carbon nanomaterials: General properties, application, and toxicity. Nanomaterials 10(8), 2020, 1–30 [https://doi.org/10.3390/nano10081508].
DOI: https://doi.org/10.3390/nano10081508
Google Scholar
Kadlec R., Drexler P.: Analysing the Responses of Layered Materials with Varied Parameters. Progress in Electromagnetics Research Symposium, 2017, 988–992.
DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293277
Google Scholar
Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M 42(1), 2015, 179–187.
DOI: https://doi.org/10.2528/PIERM15042904
Google Scholar
Kikuchi H.: Electrohydrodynamics in dusty and dirty plasmas, gravito-electrodynamics and EHD. Kluwer, Boston 2001.
DOI: https://doi.org/10.1007/978-94-015-9640-4
Google Scholar
Kim H.-J., Kang G.-H., Kim S.-H., Park S.: Enhancement of Electromagnetic Wave Shielding Effectiveness of Carbon Fibers via Chemical Composition Transformation Using H2 Plasma Treatment. Nanomaterials 10, 2020, 1611.
DOI: https://doi.org/10.3390/nano10081611
Google Scholar
Kragh H.: Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford Scholarship online, 2012 [https://doi.org/10.1093/acprof:oso/9780199654987.001.0001].
DOI: https://doi.org/10.1093/acprof:oso/9780199654987.001.0001
Google Scholar
Madrova T.: Supravodivost ve čtvrtém skupenství (Superconductivity in the fourth state) – diploma thesis. Brno University of Technology. Brno 2020.
Google Scholar
Marinho B., Ghislandi M., Tkalya E., et al.: Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology 221, 2012, 351–358.
DOI: https://doi.org/10.1016/j.powtec.2012.01.024
Google Scholar
Maxwell J. C.: A treatise on electricity and magnetism. London Macmillan and co., Publishers to the University of Oxford, Oxford 1873.
Google Scholar
Ozmaian M., Fathizadeh A., Jalalvand M. et al.: Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets. Sci Rep 6, 2016, 21910, [https://doi.org/10.1038/srep21910].
DOI: https://doi.org/10.1038/srep21910
Google Scholar
Shin E., Lee B., Jo S., Jeong G.: Investigation of early stage of carbon nanotube growth on plasma-pretreated inconel plates and comparison with other superalloys as substrates. Nanomaterials 10(8), 2020, 1–11 [https://doi.org/10.3390/nano10081595].
DOI: https://doi.org/10.3390/nano10081595
Google Scholar
Steinbauer M., Fiala P., Szabo Z., Bartusek K.: Experiments with accuracy of the air ion field measurement. Advances in Electrical and Electronic Engineering 8(7), 2008, 276–279.
Google Scholar
Stratton J. A.: Electromagnetic Theory. Wiley, New York 1941.
Google Scholar
Sun Y., Luo S., Sun H. et. al.: Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding. Carbon 136, 2018, 299–308.
DOI: https://doi.org/10.1016/j.carbon.2018.04.084
Google Scholar
Szalay S., Barcza G., Szilvási T., et al.: The correlation theory of the chemical bond. Nature-Scientific Reports 7, 2017, 2237 [https://doi.org/10.1038/s41598-017-02447-z].
DOI: https://doi.org/10.1038/s41598-017-02447-z
Google Scholar
Urban R., Drexler P., Fiala P., Nespor D.: Numerical Model of a Large Periodic Structure. Proc. PIERS, 2014, 2350–2354.
Google Scholar
Van Bladel J.: Motion of a conducting loop in a magnetic field. IEE Proceedings 13.5, Pt. A, no. 4, 1988, 217–222.
DOI: https://doi.org/10.1049/ip-a-1.1988.0033
Google Scholar
Weisstein E. W.: Galerkin Method. MathWorld, 2015, http://mathworld.wolfram.com/GalerkinMethod.html.
Google Scholar
Werner P.: Modeling the basic ring structures in elementary particles of matter. DTEEE FEEC BUT, Brno 2018.
Google Scholar
Yang S. L., Sobota J. A., Howard C. A., Pickard C. J., Hashimoto M., Lu D. H., Mo S. K., Kirchmann P. S., Shen, Z. X.: Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nature Comunnications 5(1), 2014, 3493.
DOI: https://doi.org/10.1038/ncomms4493
Google Scholar
Yarim C., Daybelge U., Sofyali A.: Search for the general relativistic effects on the motion of a spacecraft. 4th International Conference Recent Advances in Space Technologies RAST’09, 2009, 553–556.
DOI: https://doi.org/10.1109/RAST.2009.5158256
Google Scholar
Zhang D., Ranjan B., Tanaka T., Sugioka K.: Multiscale hierarchical micro/nanostructures created by femtosecond laser ablation in liquids for polarization-dependent broadband antireflection. Nanomaterials 10(8), 2020, 1–15 [https://doi.org/10.3390/nano10081573].
DOI: https://doi.org/10.3390/nano10081573
Google Scholar
Authors
Miloslav SteinbauerBrno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-1358-6974
Authors
Roman PernicaBrno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
https://orcid.org/0000-0002-6672-0137
Authors
Jiri ZukalBrno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-5550-587X
Authors
Radim KadlecBrno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-3252-4859
Authors
Tibor BachorecBrno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-6249-1509
Authors
Pavel Fialafialap@feec.vutbr.cz
Brno University of Technology, SIX Research Center Czechia
http://orcid.org/0000-0002-7203-9903
Statistics
Abstract views: 462PDF downloads: 250
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Pavel Fiala, Karel Bartušek, Jarmila Dědková, Premysl Dohnal, EMG FIELD ANALYSIS IN DYNAMIC MICROSCOPIC/NANOSCOPIC MODELS OF MATTER , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 1 (2019)
- Pavel Fiala, Martin Friedl, APPLICATION OF AN ELECTROMAGNETIC NUMERICAL MODEL IN ACCURATE MEASUREMENT OF HIGH VELOCITIES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 3 (2015)