MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES

Miloslav Steinbauer


Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-1358-6974

Roman Pernica


Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
https://orcid.org/0000-0002-6672-0137

Jiri Zukal


Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-5550-587X

Radim Kadlec


Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-3252-4859

Tibor Bachorec


Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-6249-1509

Pavel Fiala

fialap@feec.vutbr.cz
Brno University of Technology, SIX Research Center (Czechia)
http://orcid.org/0000-0002-7203-9903

Abstract

We discuss the numerical modeling of electromagnetic, carbon-based periodic structures, including graphene, graphane, graphite, and graphyne. The materials are suitable for sub-micron sensors, electric lines, and other applications, such as those within biomedicine, photonics, nano- and optoelectronics; in addition to these domains and branches, the applicability extends into, for example, microscopic solutions for modern SMART elements. The proposed classic and hybrid numerical models are based on analyzing a periodic structure with a high repeatability, and they exploit the concept of a carbon structure having its fundamental dimension in nanometers. The models can simulate harmonic and transient processes; are capable of evaluating the actual random motion of an electric charge as a source of spurious signals; and consider the parameters of harmonic signal propagation along the structure. The results obtained from the analysis are utilizable for the design of sensing devices based on carbon periodic structures and were employed in experiments with a plasma generator. The aim is to provide a broader overview of specialized nanostructural modeling, or, more concretely, to outline a model utilizable in evaluating the propagation of a signal along a structure’s surface.


Keywords:

nanomaterial, graphene, graphite, experimental modeling, hydrogen bond, periodic structure

ANSYS, Ansys Multiphysics Manuals, 2020, https://www.ansys.com/.
  Google Scholar

Bartusek K., Drexler P., Fiala P., et al.: Magnetoinductive Lens for Experimental Mid-field MR Tomograph. Progress in Electromagnetics Research Symposium Proceedings 1&2, 2010, 1047–1050.
  Google Scholar

Bina M.: The coherent interaction between matter and radiation. The European Physical Journal Special Topics 203(1), 2012, 163–183.
DOI: https://doi.org/10.1140/epjst/e2012-01541-3   Google Scholar

Castro Neto A.H., Guinea F., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Reviews of modern physics 81, 2009, 109.
DOI: https://doi.org/10.1103/RevModPhys.81.109   Google Scholar

Chao Yan, Kwang-Seop Kim, Seoung-Ki Lee, Sang-Hoon Bae, Byung Hee Hong, Jae-Hyun Kim, Hak-Joo Lee, Jong-Hyun Ahn: Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano 6(3), 2012, 2096–2103.
DOI: https://doi.org/10.1021/nn203923n   Google Scholar

Drexler P., Fiala P., Dohnal P., Marcon P.: The Electromagnetic Properties of a Multilayered Resonant Structure Formed from Inorganic Elements. Progress in Electromagnetics Research Symposium 2018, 2176–2183 [https://doi.org/10.23919/PIERS.2018.8597705].
DOI: https://doi.org/10.23919/PIERS.2018.8597705   Google Scholar

Drexler P., Fiala P., Dohnal P., Marcoň P.: The electromagnetic properties of a resonant structure formed from inorganic or organic elements. Progress in Electromagnetics Research Symposium 2017, 970–974 [https://doi.org/10.1109/PIERS-FALL.2017.8293274].
DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293274   Google Scholar

Drexler P., Nespor D., Kadlec R., Cap M.: Numerical Analysis of Metallic Periodic Structures in THz Region. Progress in Electromagnetics Research Symposium, 2016, 2730–2733.
DOI: https://doi.org/10.1109/PIERS.2016.7735111   Google Scholar

Farhana Faisal T., Islam A., Jouini M. S., Devarapalli R. S., Jouiad M., Sassi M.: Numerical prediction of carbonate elastic properties based on multi-scale imaging. Geomechanics for Energy and the Environment 20, 2019, 100125 [https://doi.org/10.1016/j.gete.2019.100125].
DOI: https://doi.org/10.1016/j.gete.2019.100125   Google Scholar

Fiala P., Bartušek K., Bachorec T., Dohnal P.: An Interference EMG Model of Selected Water Samples. Progress in Electromagnetics Research Symposium 2018, 775–781 [https://doi.org/10.23919/PIERS.2018.8597958].
DOI: https://doi.org/10.23919/PIERS.2018.8597958   Google Scholar

Fiala P., Bartušek K., Dědková J., Dohnal P.: EMG field analysis in dynamic microscopic/nanoscopic models of matter. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(1), 2019, 4–10.
DOI: https://doi.org/10.5604/01.3001.0013.0877   Google Scholar

Fiala P., Drexler P., Nespor D.: A resonance-based solar element: a numerical model and micro/nano technology application. Proc. SPIE 8763, 2013, 87632A1-87632A7.
DOI: https://doi.org/10.1117/12.2015111   Google Scholar

Fiala P., Drexler P., Nespor D.: Principal tests and verification of a resonance-based solar harvester utilizing micro/nano technology. Microsystem Technologies 20(4-5), 2014, 845–860.
DOI: https://doi.org/10.1007/s00542-013-2063-x   Google Scholar

Fiala P., Drexler P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems 18(7-8), 2012, 1181–1192.
DOI: https://doi.org/10.1007/s00542-012-1474-4   Google Scholar

Fiala P., Friedl M.: Application of an electromagnetic numerical model in accurate measurement of high velocities. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 5(3), 2015, 3–10.
  Google Scholar

Fiala P., Gescheidtova E., Jirku T.: Tuned Structures for Special THz Applications. Progress in Electromagnetics Research Symposium (PIERS 2009) 2009, 151–155.
  Google Scholar

Fiala P., Kadlec R., Drexler P.: Modeling multilayered samples of inorganic and organic speckle structures. Progress in Electromagnetics Research Symposium, 2019, 2646–2651 [https://doi.org/10.1109/PIERS-Spring46901.2019.9017266].
DOI: https://doi.org/10.1109/PIERS-Spring46901.2019.9017266   Google Scholar

Fiala P., Machac J., Polivka J.: Microwave noise field behaves like white light. Progress In Electromagnetics Research 111(1), 2011, 311–330.
DOI: https://doi.org/10.2528/PIER10041304   Google Scholar

Fiala P., Maxa J.: Numerical Models of a Multilayered Graphene Structure, Progress in Electromagnetics Research Symposium (PIERS-Toyama) 2018, 527–532 [https://doi.org/10.23919/PIERS.2018.8598000].
DOI: https://doi.org/10.23919/PIERS.2018.8598000   Google Scholar

Fiala P., Nespor D., Drexler P., Steinbauer M.: Numerical Model of a Nanoelectric Line from a Graphene Component. Microsystem Technologies 1, 2016, 1–18.
  Google Scholar

Fiala P., Szabó Z., Friedl M.: EMHD models respecting relativistic processes of trivial geometries. Progress in Electromagnetics Research Symposium, 2011, 95–98.
  Google Scholar

Fiala P., Werner P., Osmera P., Dohnal P.: Using a multiscale toroidal element to model a hydrogen atom. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017, 956–960.
DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293271   Google Scholar

Fiala P., Werner P., Osmera P., Gescheidtova E., Drexler P., Kriz T.: Periodical structures and multiscale modelling. Progress in Electromagnetics Research Symposium, 2017, 1698–1703.
DOI: https://doi.org/10.1109/PIERS.2017.8262022   Google Scholar

Geim A.K., Novoselov K.S.: The rise of graphene. Nature Materials 6(3), 2009, 183-91.
DOI: https://doi.org/10.1038/nmat1849   Google Scholar

Haňka L.: Teorie elektromagnetického pole, paperback SNTL. Praha 1971.
  Google Scholar

Heyrovska R., Narayan S.: Structures of Molecules at the Atomic Level: Caffeine and Related Compounds. Philippine Journal of Science 140(2), 2008, 119–124.
  Google Scholar

Heyrovska R.: Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon. General Physics, 2008, arXiv:0804.4086
  Google Scholar

Heyrovska R.: Methane, benzene and graphene, internal research report. 2008 http://arxiv.org/ftp/arxiv/papers/0804/0804.4086.pdf .
  Google Scholar

Holmes J., Ishimaru A.: Relativistic communications effects associated with moving space antennas. IEEE Transactions on Antennas and Propagation 17(4), 1969, 484–488.
DOI: https://doi.org/10.1109/TAP.1969.1139473   Google Scholar

Hui F., Pan Ch., Shi Y., Ji Y., Grustan-Gutierrez E., Lanza M.: On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering 163, 2016, 119–133.
DOI: https://doi.org/10.1016/j.mee.2016.06.015   Google Scholar

Jović D., Jaćević V., Kuča K., Borišev I., Mrdjanovic J., Petrovic D., Djordjevic A.: The puzzling potential of carbon nanomaterials: General properties, application, and toxicity. Nanomaterials 10(8), 2020, 1–30 [https://doi.org/10.3390/nano10081508].
DOI: https://doi.org/10.3390/nano10081508   Google Scholar

Kadlec R., Drexler P.: Analysing the Responses of Layered Materials with Varied Parameters. Progress in Electromagnetics Research Symposium, 2017, 988–992.
DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293277   Google Scholar

Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M 42(1), 2015, 179–187.
DOI: https://doi.org/10.2528/PIERM15042904   Google Scholar

Kikuchi H.: Electrohydrodynamics in dusty and dirty plasmas, gravito-electrodynamics and EHD. Kluwer, Boston 2001.
DOI: https://doi.org/10.1007/978-94-015-9640-4   Google Scholar

Kim H.-J., Kang G.-H., Kim S.-H., Park S.: Enhancement of Electromagnetic Wave Shielding Effectiveness of Carbon Fibers via Chemical Composition Transformation Using H2 Plasma Treatment. Nanomaterials 10, 2020, 1611.
DOI: https://doi.org/10.3390/nano10081611   Google Scholar

Kragh H.: Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford Scholarship online, 2012 [https://doi.org/10.1093/acprof:oso/9780199654987.001.0001].
DOI: https://doi.org/10.1093/acprof:oso/9780199654987.001.0001   Google Scholar

Madrova T.: Supravodivost ve čtvrtém skupenství (Superconductivity in the fourth state) – diploma thesis. Brno University of Technology. Brno 2020.
  Google Scholar

Marinho B., Ghislandi M., Tkalya E., et al.: Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology 221, 2012, 351–358.
DOI: https://doi.org/10.1016/j.powtec.2012.01.024   Google Scholar

Maxwell J. C.: A treatise on electricity and magnetism. London Macmillan and co., Publishers to the University of Oxford, Oxford 1873.
  Google Scholar

Ozmaian M., Fathizadeh A., Jalalvand M. et al.: Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets. Sci Rep 6, 2016, 21910, [https://doi.org/10.1038/srep21910].
DOI: https://doi.org/10.1038/srep21910   Google Scholar

Shin E., Lee B., Jo S., Jeong G.: Investigation of early stage of carbon nanotube growth on plasma-pretreated inconel plates and comparison with other superalloys as substrates. Nanomaterials 10(8), 2020, 1–11 [https://doi.org/10.3390/nano10081595].
DOI: https://doi.org/10.3390/nano10081595   Google Scholar

Steinbauer M., Fiala P., Szabo Z., Bartusek K.: Experiments with accuracy of the air ion field measurement. Advances in Electrical and Electronic Engineering 8(7), 2008, 276–279.
  Google Scholar

Stratton J. A.: Electromagnetic Theory. Wiley, New York 1941.
  Google Scholar

Sun Y., Luo S., Sun H. et. al.: Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding. Carbon 136, 2018, 299–308.
DOI: https://doi.org/10.1016/j.carbon.2018.04.084   Google Scholar

Szalay S., Barcza G., Szilvási T., et al.: The correlation theory of the chemical bond. Nature-Scientific Reports 7, 2017, 2237 [https://doi.org/10.1038/s41598-017-02447-z].
DOI: https://doi.org/10.1038/s41598-017-02447-z   Google Scholar

Urban R., Drexler P., Fiala P., Nespor D.: Numerical Model of a Large Periodic Structure. Proc. PIERS, 2014, 2350–2354.
  Google Scholar

Van Bladel J.: Motion of a conducting loop in a magnetic field. IEE Proceedings 13.5, Pt. A, no. 4, 1988, 217–222.
DOI: https://doi.org/10.1049/ip-a-1.1988.0033   Google Scholar

Weisstein E. W.: Galerkin Method. MathWorld, 2015, http://mathworld.wolfram.com/GalerkinMethod.html.
  Google Scholar

Werner P.: Modeling the basic ring structures in elementary particles of matter. DTEEE FEEC BUT, Brno 2018.
  Google Scholar

Yang S. L., Sobota J. A., Howard C. A., Pickard C. J., Hashimoto M., Lu D. H., Mo S. K., Kirchmann P. S., Shen, Z. X.: Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nature Comunnications 5(1), 2014, 3493.
DOI: https://doi.org/10.1038/ncomms4493   Google Scholar

Yarim C., Daybelge U., Sofyali A.: Search for the general relativistic effects on the motion of a spacecraft. 4th International Conference Recent Advances in Space Technologies RAST’09, 2009, 553–556.
DOI: https://doi.org/10.1109/RAST.2009.5158256   Google Scholar

Zhang D., Ranjan B., Tanaka T., Sugioka K.: Multiscale hierarchical micro/nanostructures created by femtosecond laser ablation in liquids for polarization-dependent broadband antireflection. Nanomaterials 10(8), 2020, 1–15 [https://doi.org/10.3390/nano10081573].
DOI: https://doi.org/10.3390/nano10081573   Google Scholar

Download


Published
2020-12-20

Cited by

Steinbauer, M., Pernica, R., Zukal, J., Kadlec, R., Bachorec, T., & Fiala, P. (2020). MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(4), 4–14. https://doi.org/10.35784/iapgos.2383

Authors

Miloslav Steinbauer 

Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-1358-6974

Authors

Roman Pernica 

Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
https://orcid.org/0000-0002-6672-0137

Authors

Jiri Zukal 

Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-5550-587X

Authors

Radim Kadlec 

Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-3252-4859

Authors

Tibor Bachorec 

Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-6249-1509

Authors

Pavel Fiala 
fialap@feec.vutbr.cz
Brno University of Technology, SIX Research Center Czechia
http://orcid.org/0000-0002-7203-9903

Statistics

Abstract views: 461
PDF downloads: 246