MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Article Sidebar
Open full text
Issue Vol. 10 No. 4 (2020)
-
MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Miloslav Steinbauer, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, Pavel Fiala4-14
-
X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD
Karolina Siedliska15-18
-
COMPUTER PREDICTION OF TECHNOLOGICAL REGIMES OF RAPID CONE-SHAPED ADSORPTION FILTERS WITH CHEMICAL REGENERATION OF HOMOGENEOUS POROUS LOADS
Andrii Bomba, Yurii Klymyuk, Ihor Prysіazhnіuk19-24
-
FREQUENCY RESPONSE OF NORRIS GAP DERIVATIVES AND ITS PROSPERITIES FOR GAS SPECTRA ANALYSIS
Sławomir Cięszczyk25-28
-
BIT ERROR NOTIFICATION AND ESTIMATION IN REDUNDANT SUCCESSIVE-APPROXIMATION ADC
Serhii Zakharchenko , Roman Humeniuk29-32
-
DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS
Adam Kurnicki, Bartłomiej Stańczyk33-37
-
TAKING INTO ACCOUNT THE PHASE INSTABILITY OF GENERATORS CAUSED BY THE INFLUENCE OF IONIZING RADIATION OF SPACE ON THE PARAMETERS OF CARRIER FREQUENCY SYNCHRONIZATION SYSTEMS
Oleksandr Turovsky, Sergei Panadiy38-42
-
MULTI-CHANNEL DIGITAL-ANALOG SYSTEM BASED ON CURRENT-CURRENT CONVERTERS
Olexiy Azarov, Yevhenii Heneralnytskyi, Nataliia Rybko43-46
-
A COMPUTER SYSTEM FOR ACQUISITION AND ANALYSIS OF MEASUREMENT DATA FOR A SKEW ROLLING MILL IN MANUFACTURING STEEL BALLS
Marcin Buczaj, Andrzej Sumorek47-50
-
RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Alexander Osadchuk, Vladimir Osadchuk, Iaroslav Osadchuk51-56
-
DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Kanstantsin Pantsialeyeu, Anatoly Zharin, Oleg Gusev, Roman Vorobey, Andrey Tyavlovsky, Konstantin Tyavlovsky, Aliaksandr Svistun57-60
-
OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL
Magdalena Michalska61-64
-
AN ELECTRICALLY-CONTROLLED AXIAL-FLUX PERMANENT MAGNET GENERATOR
Piotr Paplicki, Paweł Prajzendanc, Marcin Wardach65-68
-
METHOD OF DETERMINING THE COP COEFFICIENT FOR A COOLING SYSTEM
Mariusz Rzasa, Sławomir Pochwała, Sławomir Szymaniec69-72
-
THE IMPACT OF DIGITAL PHOTOGRAPHY PROCESSING IN MOBILE APPLICATIONS ON THE QUALITY OF REACH IN SOCIAL MEDIA
Magdalena Paśnikowska-Łukaszuk, Arkadiusz Urzędowski73-76
-
USE OF WEB 2.0 TOOLS BY POLISH HEALTH PORTALS
Magdalena Czerwinska77-82
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
We discuss the numerical modeling of electromagnetic, carbon-based periodic structures, including graphene, graphane, graphite, and graphyne. The materials are suitable for sub-micron sensors, electric lines, and other applications, such as those within biomedicine, photonics, nano- and optoelectronics; in addition to these domains and branches, the applicability extends into, for example, microscopic solutions for modern SMART elements. The proposed classic and hybrid numerical models are based on analyzing a periodic structure with a high repeatability, and they exploit the concept of a carbon structure having its fundamental dimension in nanometers. The models can simulate harmonic and transient processes; are capable of evaluating the actual random motion of an electric charge as a source of spurious signals; and consider the parameters of harmonic signal propagation along the structure. The results obtained from the analysis are utilizable for the design of sensing devices based on carbon periodic structures and were employed in experiments with a plasma generator. The aim is to provide a broader overview of specialized nanostructural modeling, or, more concretely, to outline a model utilizable in evaluating the propagation of a signal along a structure’s surface.
Keywords:
References
ANSYS, Ansys Multiphysics Manuals, 2020, https://www.ansys.com/.
Bartusek K., Drexler P., Fiala P., et al.: Magnetoinductive Lens for Experimental Mid-field MR Tomograph. Progress in Electromagnetics Research Symposium Proceedings 1&2, 2010, 1047–1050.
Bina M.: The coherent interaction between matter and radiation. The European Physical Journal Special Topics 203(1), 2012, 163–183. DOI: https://doi.org/10.1140/epjst/e2012-01541-3
Castro Neto A.H., Guinea F., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Reviews of modern physics 81, 2009, 109. DOI: https://doi.org/10.1103/RevModPhys.81.109
Chao Yan, Kwang-Seop Kim, Seoung-Ki Lee, Sang-Hoon Bae, Byung Hee Hong, Jae-Hyun Kim, Hak-Joo Lee, Jong-Hyun Ahn: Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano 6(3), 2012, 2096–2103. DOI: https://doi.org/10.1021/nn203923n
Drexler P., Fiala P., Dohnal P., Marcon P.: The Electromagnetic Properties of a Multilayered Resonant Structure Formed from Inorganic Elements. Progress in Electromagnetics Research Symposium 2018, 2176–2183 [https://doi.org/10.23919/PIERS.2018.8597705]. DOI: https://doi.org/10.23919/PIERS.2018.8597705
Drexler P., Fiala P., Dohnal P., Marcoň P.: The electromagnetic properties of a resonant structure formed from inorganic or organic elements. Progress in Electromagnetics Research Symposium 2017, 970–974 [https://doi.org/10.1109/PIERS-FALL.2017.8293274]. DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293274
Drexler P., Nespor D., Kadlec R., Cap M.: Numerical Analysis of Metallic Periodic Structures in THz Region. Progress in Electromagnetics Research Symposium, 2016, 2730–2733. DOI: https://doi.org/10.1109/PIERS.2016.7735111
Farhana Faisal T., Islam A., Jouini M. S., Devarapalli R. S., Jouiad M., Sassi M.: Numerical prediction of carbonate elastic properties based on multi-scale imaging. Geomechanics for Energy and the Environment 20, 2019, 100125 [https://doi.org/10.1016/j.gete.2019.100125]. DOI: https://doi.org/10.1016/j.gete.2019.100125
Fiala P., Bartušek K., Bachorec T., Dohnal P.: An Interference EMG Model of Selected Water Samples. Progress in Electromagnetics Research Symposium 2018, 775–781 [https://doi.org/10.23919/PIERS.2018.8597958]. DOI: https://doi.org/10.23919/PIERS.2018.8597958
Fiala P., Bartušek K., Dědková J., Dohnal P.: EMG field analysis in dynamic microscopic/nanoscopic models of matter. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(1), 2019, 4–10. DOI: https://doi.org/10.5604/01.3001.0013.0877
Fiala P., Drexler P., Nespor D.: A resonance-based solar element: a numerical model and micro/nano technology application. Proc. SPIE 8763, 2013, 87632A1-87632A7. DOI: https://doi.org/10.1117/12.2015111
Fiala P., Drexler P., Nespor D.: Principal tests and verification of a resonance-based solar harvester utilizing micro/nano technology. Microsystem Technologies 20(4-5), 2014, 845–860. DOI: https://doi.org/10.1007/s00542-013-2063-x
Fiala P., Drexler P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems 18(7-8), 2012, 1181–1192. DOI: https://doi.org/10.1007/s00542-012-1474-4
Fiala P., Friedl M.: Application of an electromagnetic numerical model in accurate measurement of high velocities. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 5(3), 2015, 3–10.
Fiala P., Gescheidtova E., Jirku T.: Tuned Structures for Special THz Applications. Progress in Electromagnetics Research Symposium (PIERS 2009) 2009, 151–155.
Fiala P., Kadlec R., Drexler P.: Modeling multilayered samples of inorganic and organic speckle structures. Progress in Electromagnetics Research Symposium, 2019, 2646–2651 [https://doi.org/10.1109/PIERS-Spring46901.2019.9017266]. DOI: https://doi.org/10.1109/PIERS-Spring46901.2019.9017266
Fiala P., Machac J., Polivka J.: Microwave noise field behaves like white light. Progress In Electromagnetics Research 111(1), 2011, 311–330. DOI: https://doi.org/10.2528/PIER10041304
Fiala P., Maxa J.: Numerical Models of a Multilayered Graphene Structure, Progress in Electromagnetics Research Symposium (PIERS-Toyama) 2018, 527–532 [https://doi.org/10.23919/PIERS.2018.8598000]. DOI: https://doi.org/10.23919/PIERS.2018.8598000
Fiala P., Nespor D., Drexler P., Steinbauer M.: Numerical Model of a Nanoelectric Line from a Graphene Component. Microsystem Technologies 1, 2016, 1–18.
Fiala P., Szabó Z., Friedl M.: EMHD models respecting relativistic processes of trivial geometries. Progress in Electromagnetics Research Symposium, 2011, 95–98.
Fiala P., Werner P., Osmera P., Dohnal P.: Using a multiscale toroidal element to model a hydrogen atom. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017, 956–960. DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293271
Fiala P., Werner P., Osmera P., Gescheidtova E., Drexler P., Kriz T.: Periodical structures and multiscale modelling. Progress in Electromagnetics Research Symposium, 2017, 1698–1703. DOI: https://doi.org/10.1109/PIERS.2017.8262022
Geim A.K., Novoselov K.S.: The rise of graphene. Nature Materials 6(3), 2009, 183-91. DOI: https://doi.org/10.1038/nmat1849
Haňka L.: Teorie elektromagnetického pole, paperback SNTL. Praha 1971.
Heyrovska R., Narayan S.: Structures of Molecules at the Atomic Level: Caffeine and Related Compounds. Philippine Journal of Science 140(2), 2008, 119–124.
Heyrovska R.: Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon. General Physics, 2008, arXiv:0804.4086
Heyrovska R.: Methane, benzene and graphene, internal research report. 2008 http://arxiv.org/ftp/arxiv/papers/0804/0804.4086.pdf .
Holmes J., Ishimaru A.: Relativistic communications effects associated with moving space antennas. IEEE Transactions on Antennas and Propagation 17(4), 1969, 484–488. DOI: https://doi.org/10.1109/TAP.1969.1139473
Hui F., Pan Ch., Shi Y., Ji Y., Grustan-Gutierrez E., Lanza M.: On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering 163, 2016, 119–133. DOI: https://doi.org/10.1016/j.mee.2016.06.015
Jović D., Jaćević V., Kuča K., Borišev I., Mrdjanovic J., Petrovic D., Djordjevic A.: The puzzling potential of carbon nanomaterials: General properties, application, and toxicity. Nanomaterials 10(8), 2020, 1–30 [https://doi.org/10.3390/nano10081508]. DOI: https://doi.org/10.3390/nano10081508
Kadlec R., Drexler P.: Analysing the Responses of Layered Materials with Varied Parameters. Progress in Electromagnetics Research Symposium, 2017, 988–992. DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293277
Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M 42(1), 2015, 179–187. DOI: https://doi.org/10.2528/PIERM15042904
Kikuchi H.: Electrohydrodynamics in dusty and dirty plasmas, gravito-electrodynamics and EHD. Kluwer, Boston 2001. DOI: https://doi.org/10.1007/978-94-015-9640-4
Kim H.-J., Kang G.-H., Kim S.-H., Park S.: Enhancement of Electromagnetic Wave Shielding Effectiveness of Carbon Fibers via Chemical Composition Transformation Using H2 Plasma Treatment. Nanomaterials 10, 2020, 1611. DOI: https://doi.org/10.3390/nano10081611
Kragh H.: Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford Scholarship online, 2012 [https://doi.org/10.1093/acprof:oso/9780199654987.001.0001]. DOI: https://doi.org/10.1093/acprof:oso/9780199654987.001.0001
Madrova T.: Supravodivost ve čtvrtém skupenství (Superconductivity in the fourth state) – diploma thesis. Brno University of Technology. Brno 2020.
Marinho B., Ghislandi M., Tkalya E., et al.: Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology 221, 2012, 351–358. DOI: https://doi.org/10.1016/j.powtec.2012.01.024
Maxwell J. C.: A treatise on electricity and magnetism. London Macmillan and co., Publishers to the University of Oxford, Oxford 1873.
Ozmaian M., Fathizadeh A., Jalalvand M. et al.: Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets. Sci Rep 6, 2016, 21910, [https://doi.org/10.1038/srep21910]. DOI: https://doi.org/10.1038/srep21910
Shin E., Lee B., Jo S., Jeong G.: Investigation of early stage of carbon nanotube growth on plasma-pretreated inconel plates and comparison with other superalloys as substrates. Nanomaterials 10(8), 2020, 1–11 [https://doi.org/10.3390/nano10081595]. DOI: https://doi.org/10.3390/nano10081595
Steinbauer M., Fiala P., Szabo Z., Bartusek K.: Experiments with accuracy of the air ion field measurement. Advances in Electrical and Electronic Engineering 8(7), 2008, 276–279.
Stratton J. A.: Electromagnetic Theory. Wiley, New York 1941.
Sun Y., Luo S., Sun H. et. al.: Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding. Carbon 136, 2018, 299–308. DOI: https://doi.org/10.1016/j.carbon.2018.04.084
Szalay S., Barcza G., Szilvási T., et al.: The correlation theory of the chemical bond. Nature-Scientific Reports 7, 2017, 2237 [https://doi.org/10.1038/s41598-017-02447-z]. DOI: https://doi.org/10.1038/s41598-017-02447-z
Urban R., Drexler P., Fiala P., Nespor D.: Numerical Model of a Large Periodic Structure. Proc. PIERS, 2014, 2350–2354.
Van Bladel J.: Motion of a conducting loop in a magnetic field. IEE Proceedings 13.5, Pt. A, no. 4, 1988, 217–222. DOI: https://doi.org/10.1049/ip-a-1.1988.0033
Weisstein E. W.: Galerkin Method. MathWorld, 2015, http://mathworld.wolfram.com/GalerkinMethod.html.
Werner P.: Modeling the basic ring structures in elementary particles of matter. DTEEE FEEC BUT, Brno 2018.
Yang S. L., Sobota J. A., Howard C. A., Pickard C. J., Hashimoto M., Lu D. H., Mo S. K., Kirchmann P. S., Shen, Z. X.: Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nature Comunnications 5(1), 2014, 3493. DOI: https://doi.org/10.1038/ncomms4493
Yarim C., Daybelge U., Sofyali A.: Search for the general relativistic effects on the motion of a spacecraft. 4th International Conference Recent Advances in Space Technologies RAST’09, 2009, 553–556. DOI: https://doi.org/10.1109/RAST.2009.5158256
Zhang D., Ranjan B., Tanaka T., Sugioka K.: Multiscale hierarchical micro/nanostructures created by femtosecond laser ablation in liquids for polarization-dependent broadband antireflection. Nanomaterials 10(8), 2020, 1–15 [https://doi.org/10.3390/nano10081573]. DOI: https://doi.org/10.3390/nano10081573
Article Details
Abstract views: 590
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
