METHOD OF OBTAINING THE SPECTRAL CHARACTERISTICS OF THE SCANNING PROBE MICROSCOPE

Mariia Kataieva

kataeva.mariia@gmail.com
National Aviation University, Kiev, Ukraine (Ukraine)
http://orcid.org/0000-0002-1586-1861

Vladimir Kvasnikov


National Aviation University, Kiev, Ukraine (Ukraine)
http://orcid.org/0000-0002-6525-9721

Abstract

The article discusses methods and algorithms for digital processing and filtering when carrying out nano-measurements using a scanning probe microscope. The paper discusses frequency methods for improving images, in particular, the use of the Fourier transforms with various filtering methods to improve the quality of the resulting image. Stable computational algorithms have been developed for transforming discrete signals based on the Fourier transform. Methods for the interpretation of the numerical results of the discrete Fourier transform in such packages as Matlab, MathCad, Matematica are presented. It is proposed to use a window transform, developed based on the Fourier transform, which makes it possible to single out the informative features of the signal and to reduce the influence of the destabilizing factors that arise when processing signals from a scanning gold microscope in real conditions.


Keywords:

nano-measurement, digital signal processing, scanning probe microscope, Fourier transform

Addison P. S.: Secondary transform decoupling of shifted nonstationary signal modulation components: application to photoplethysmography. Int. J. Wavelets Multires. Inf. Proc. 2, 2004, 43–57.
DOI: https://doi.org/10.1142/S0219691304000329   Google Scholar

Falvo M. et al.: The nanomanipulator: A teleoperator for manipulating materials at the nanomerter scale. Proc. of Int. Symp. On Science and Technology of Atomically Engineered Materials, 1996, 579–586.
  Google Scholar

Hyon C. K. et al.: Application of atomic-force-microscope direct patterning to selective positioning of InAs quantum dots on GaAs. Applied Physics Letters 77, 2000, 2607–2609.
DOI: https://doi.org/10.1063/1.1318393   Google Scholar

Ito K. J. et al.: Servomechanism for locking scanning tunneling microscope tip over surface nanostructures. Rev. of Sci. Inst. 71(2), 2000, 420–423.
DOI: https://doi.org/10.1063/1.1150217   Google Scholar

Iwasaki H., Yoshinobu T., Sudoh K.: Nanolithography on SiO2/Si with a scanning tunneling microscope. Nanotechnology 14, 2003, 55–62.
DOI: https://doi.org/10.1088/0957-4484/14/11/R01   Google Scholar

Majumdar A. et al.: Nanometer-scale lithography using the atomic force microscope. Applied Physics Letters 61, 2002, 2293–2295.
DOI: https://doi.org/10.1063/1.108268   Google Scholar

Mokaberi B., Requicha A. A. G.: Drift compensation for automatic nanomanipulation with scanning probe microscopes. IEEE Trans. on Automation Science and Engineering 3(3), 2006, 199–207.
DOI: https://doi.org/10.1109/TASE.2006.875534   Google Scholar

Mokaberi B., Requicha A. A. G.: Towards automatic nanomanipulation drift compensation in scanning probe microscopes. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, 2004.
DOI: https://doi.org/10.1109/ROBOT.2004.1307185   Google Scholar

Ohji H. et al.: Fabrication of a beam-mass structure using single-step electrochemical etching for micro structures (SEEMS). J. Micromech. Microeng. 10, 2000, 440–444.
DOI: https://doi.org/10.1088/0960-1317/10/3/320   Google Scholar

Roth S., Dellmann L., Racine G. A., de Rooij N. F.: High aspect ratio UV photolithography for electroplated structures. J. Micromech. Mecroeng. 9, 2009, 105–108.
DOI: https://doi.org/10.1088/0960-1317/9/2/001   Google Scholar

Sahoo D. R. et al.: Transient signal based sample detection in atomic force microscopy. Applied Physics Letters 83(26), 2003, 5521–5523.
DOI: https://doi.org/10.1063/1.1633963   Google Scholar

Said R. A.: Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling. Nanotechnology 15, 2004, 867.
DOI: https://doi.org/10.1088/0957-4484/15/7/C01   Google Scholar

Salapaka S., De T.: A new sample-profile estimate for faster imaging in atomic force microscopy. Proceedings of the American Control Conference, Boston, MA, 2004.
DOI: https://doi.org/10.1115/IMECE2005-80511   Google Scholar

Salapaka М. V. et al.: Multimode noise analysis of cantilevers for scanning probe microscopy. Journal of Applied Physics 81(6), 1997, 2480–2487.
DOI: https://doi.org/10.1063/1.363955   Google Scholar

San Paulo A., Garcia R.: Tip-surface forces, amplitude and energy dissipation in amplitude–modulation (tapping mode) force microscopy. Physical Review B. 64, 2002, 041406 (1–4).
DOI: https://doi.org/10.1103/PhysRevB.64.193411   Google Scholar

Sebastian A. et al.: Robust control approach to atomic force microscopy. Proceedings of the IEEE Conference on Decision and Control, Hawai, 2003.
  Google Scholar

Staub R. at al.: Drift elimination in the calibration of scanning probe microscopes. Rev. Sci. Inst. 66(3), 1995, 2513–2516.
DOI: https://doi.org/10.1063/1.1145650   Google Scholar

Yang Q., Jagannathan S.: Nanomanipulation using atomic force microscope with drift compensation. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006.
  Google Scholar

Yang S. et al.: Block phase correlation-based automatic drift compensation for atomic force microscopes. IEEE Int. Conf. on Nanotechnology, Nagoya, Japan, 2005.
  Google Scholar

Yaseen A. S. at al.: Speech signal denoising with wavelet-transforms and the mean opinion score characterizing the filtering quality. Proc. SPIE. 9707, 2016, 970719.
DOI: https://doi.org/10.1117/12.2211384   Google Scholar

Download


Published
2021-06-30

Cited by

Kataieva, M., & Kvasnikov, V. (2021). METHOD OF OBTAINING THE SPECTRAL CHARACTERISTICS OF THE SCANNING PROBE MICROSCOPE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(2), 52–55. https://doi.org/10.35784/iapgos.2646

Authors

Mariia Kataieva 
kataeva.mariia@gmail.com
National Aviation University, Kiev, Ukraine Ukraine
http://orcid.org/0000-0002-1586-1861

Authors

Vladimir Kvasnikov 

National Aviation University, Kiev, Ukraine Ukraine
http://orcid.org/0000-0002-6525-9721

Statistics

Abstract views: 255
PDF downloads: 172