METHOD OF OBTAINING THE SPECTRAL CHARACTERISTICS OF THE SCANNING PROBE MICROSCOPE
Article Sidebar
Open full text
Issue Vol. 11 No. 2 (2021)
-
A STEP TOWARDS THE MAJORITY-BASED CLUSTERING VALIDATION DECISION FUSION METHOD
Taras Panskyi, Volodymyr Mosorov4-13
-
FUZZY APPROACH TO DEVICE LOCALIZATION BASED ON WIRELESS NETWORK SIGNAL STRENGTH
Michał Socha, Wojciech Górka, Marcin Michalak14-21
-
APPLICATION OF DIGITAL IMAGE PROCESSING METHODS FOR OBTAINING CONTOURS OF OBJECTS ON ULTRASOUND IMAGES OF THE HIP JOINT
Pavlo Ratushnyi, Yosyp Bilynskyi, Stepan Zhyvotivskyi22-25
-
OVERVIEW OF THE USE OF X-RAY EQUIPMENT IN ELECTRONICS QUALITY TESTS
Magdalena Michalska26-29
-
SIMULATION AND EXPERIMENTAL RESEARCH OF CLAW POLE MACHINE WITH A HYBRID EXCITATION AND LAMINATED ROTOR CORE
Marcin Wardach, Paweł Prajzendanc, Kamil Cierzniewski, Michał Cichowicz, Szymon Pacholski, Mikołaj Wiszniewski, Krzysztof Baradziej, Szymon Osipowicz30-35
-
BATTERY SWAPPING STATIONS FOR ELECTRIC VEHICLES
Aleksander Chudy36-39
-
OVERVOLTAGE PROTECTION OF PV MICROINSTALLATIONS – REGULATORY REQUIREMENTS AND SIMULATION MODEL
Klara Janiga40-43
-
DETERMINATION OF HYDRODYNAMIC PARAMETERS OF THE SEALED PRESSURE EXTRACTOR
Nataliaya Kosulina, Stanislav Kosulin, Kostiantyn Korshunov, Tetyana Nosova, Yana Nosova44-47
-
DEVELOPMENT OF A DEVICE FOR MEASURING AND ANALYZING VIBRATIONS
Anzhelika Stakhova, Volodymyr Kvasnikov48-51
-
METHOD OF OBTAINING THE SPECTRAL CHARACTERISTICS OF THE SCANNING PROBE MICROSCOPE
Mariia Kataieva, Vladimir Kvasnikov52-55
-
BROADBAND SATELLITE DATA NETWORKS IN THE CONTEXT OF AVAILABLE PROTOCOLS AND DIGITAL PLATFORMS
ENGLISHJacek Wilk-Jakubowski56-60
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Abstract
The article discusses methods and algorithms for digital processing and filtering when carrying out nano-measurements using a scanning probe microscope. The paper discusses frequency methods for improving images, in particular, the use of the Fourier transforms with various filtering methods to improve the quality of the resulting image. Stable computational algorithms have been developed for transforming discrete signals based on the Fourier transform. Methods for the interpretation of the numerical results of the discrete Fourier transform in such packages as Matlab, MathCad, Matematica are presented. It is proposed to use a window transform, developed based on the Fourier transform, which makes it possible to single out the informative features of the signal and to reduce the influence of the destabilizing factors that arise when processing signals from a scanning gold microscope in real conditions.
Keywords:
References
Addison P. S.: Secondary transform decoupling of shifted nonstationary signal modulation components: application to photoplethysmography. Int. J. Wavelets Multires. Inf. Proc. 2, 2004, 43–57. DOI: https://doi.org/10.1142/S0219691304000329
Falvo M. et al.: The nanomanipulator: A teleoperator for manipulating materials at the nanomerter scale. Proc. of Int. Symp. On Science and Technology of Atomically Engineered Materials, 1996, 579–586.
Hyon C. K. et al.: Application of atomic-force-microscope direct patterning to selective positioning of InAs quantum dots on GaAs. Applied Physics Letters 77, 2000, 2607–2609. DOI: https://doi.org/10.1063/1.1318393
Ito K. J. et al.: Servomechanism for locking scanning tunneling microscope tip over surface nanostructures. Rev. of Sci. Inst. 71(2), 2000, 420–423. DOI: https://doi.org/10.1063/1.1150217
Iwasaki H., Yoshinobu T., Sudoh K.: Nanolithography on SiO2/Si with a scanning tunneling microscope. Nanotechnology 14, 2003, 55–62. DOI: https://doi.org/10.1088/0957-4484/14/11/R01
Majumdar A. et al.: Nanometer-scale lithography using the atomic force microscope. Applied Physics Letters 61, 2002, 2293–2295. DOI: https://doi.org/10.1063/1.108268
Mokaberi B., Requicha A. A. G.: Drift compensation for automatic nanomanipulation with scanning probe microscopes. IEEE Trans. on Automation Science and Engineering 3(3), 2006, 199–207. DOI: https://doi.org/10.1109/TASE.2006.875534
Mokaberi B., Requicha A. A. G.: Towards automatic nanomanipulation drift compensation in scanning probe microscopes. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, 2004. DOI: https://doi.org/10.1109/ROBOT.2004.1307185
Ohji H. et al.: Fabrication of a beam-mass structure using single-step electrochemical etching for micro structures (SEEMS). J. Micromech. Microeng. 10, 2000, 440–444. DOI: https://doi.org/10.1088/0960-1317/10/3/320
Roth S., Dellmann L., Racine G. A., de Rooij N. F.: High aspect ratio UV photolithography for electroplated structures. J. Micromech. Mecroeng. 9, 2009, 105–108. DOI: https://doi.org/10.1088/0960-1317/9/2/001
Sahoo D. R. et al.: Transient signal based sample detection in atomic force microscopy. Applied Physics Letters 83(26), 2003, 5521–5523. DOI: https://doi.org/10.1063/1.1633963
Said R. A.: Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling. Nanotechnology 15, 2004, 867. DOI: https://doi.org/10.1088/0957-4484/15/7/C01
Salapaka S., De T.: A new sample-profile estimate for faster imaging in atomic force microscopy. Proceedings of the American Control Conference, Boston, MA, 2004. DOI: https://doi.org/10.1115/IMECE2005-80511
Salapaka М. V. et al.: Multimode noise analysis of cantilevers for scanning probe microscopy. Journal of Applied Physics 81(6), 1997, 2480–2487. DOI: https://doi.org/10.1063/1.363955
San Paulo A., Garcia R.: Tip-surface forces, amplitude and energy dissipation in amplitude–modulation (tapping mode) force microscopy. Physical Review B. 64, 2002, 041406 (1–4). DOI: https://doi.org/10.1103/PhysRevB.64.193411
Sebastian A. et al.: Robust control approach to atomic force microscopy. Proceedings of the IEEE Conference on Decision and Control, Hawai, 2003.
Staub R. at al.: Drift elimination in the calibration of scanning probe microscopes. Rev. Sci. Inst. 66(3), 1995, 2513–2516. DOI: https://doi.org/10.1063/1.1145650
Yang Q., Jagannathan S.: Nanomanipulation using atomic force microscope with drift compensation. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006.
Yang S. et al.: Block phase correlation-based automatic drift compensation for atomic force microscopes. IEEE Int. Conf. on Nanotechnology, Nagoya, Japan, 2005.
Yaseen A. S. at al.: Speech signal denoising with wavelet-transforms and the mean opinion score characterizing the filtering quality. Proc. SPIE. 9707, 2016, 970719. DOI: https://doi.org/10.1117/12.2211384
Article Details
Abstract views: 374
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
