OVERVIEW OF SKIN DIAGNOSTIC TECHNIQUES BASED ON MULTILAYER SKIN MODELS AND SPECTROPHOTOMETRICS
Magdalena Michalska
mmagamichalska@gmail.comLublin University of Technology, Department of Electronics and Information Technology (Poland)
http://orcid.org/0000-0002-0874-3285
Abstract
Today, spectrophotometrics is a promising tool for non-invasive examination of the optical properties of human skin. The spectrum obtained during the study is carefully analysed by models developed by many scientists. Developed multilayer models are designed to reflect the most faithful processes occurring in the skin, its layers and essential elements. Many skin diseases are diagnosed: vitiligo, hemangios, skin birthmarks, melanoma. The article provides an overview of interesting solutions using spectrophotometrics in the process of diagnosing skin diseases.
Keywords:
multi-layered skin models, skin disease diagnosis, spectrophotometrics, spectrumReferences
Barral J. K., Bangerter N. K., Hu B. S., Nishimura D. G.: In vivo vigh-resolution magnetic resonance skin imaging at 1.5 T and 3 T. MagnReson Med. 63(3), 2010, 790–796.
DOI: https://doi.org/10.1002/mrm.22271
Google Scholar
Barun V. V., Ivanov A. P.: Optical parameters of disperse medium with large absorbing and scattering inclusions. Opt. Spektrosk. 96 (6), 2004, 1019.
Google Scholar
Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics 38(15), 2005, 2543.
DOI: https://doi.org/10.1088/0022-3727/38/15/004
Google Scholar
Bjorgan A., Milanic M., Randeberg L. L.: Estimation of skin optical parameters for real-time hyperspectral imaging applications. Journal of Biomedical Optics 19(6), 2014, 066003.
DOI: https://doi.org/10.1117/1.JBO.19.6.066003
Google Scholar
Cheong W. F., Prahl S. A., Welsh A. J.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 1990, 2166–2185.
DOI: https://doi.org/10.1109/3.64354
Google Scholar
Claridge E., Cotton S., Hall P., Moncrieff M.: From colour to tissue histology: physics based interpretation of images of pigmented skin lesions. MICCAI (1), 2002, 730–738.
DOI: https://doi.org/10.1007/3-540-45786-0_90
Google Scholar
Claridge E., Cotton S., Moncrieff M., Hall P.: Spectrophotometric Intracutaneous Imaging (SIAscopy): Method and clinical applications. Handbook of non-invasive methods and the skin (2nd ed). CRC Press 2006.
DOI: https://doi.org/10.3109/9781420003307-44
Google Scholar
Cugmas B., Bregar M., Bürmen M., Pernuš F., Likar B.: Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: problems and solutions. Journal of biomedical optics 19(3), 2014, 037002–037002.
DOI: https://doi.org/10.1117/1.JBO.19.3.037002
Google Scholar
Dwyer T., Blizzard L., Ashbolt R., Plumb J., Berwick M., Stankovich J. M.: Cutaneous melanin density measured by spectrophotometry and risk of malignant melanoma, basal cell carcinoma and inner arm melanin density and squamous cell carcinoma of the skin. Am. J. Epidemiol. 155, 2002, 614–621.
DOI: https://doi.org/10.1093/aje/155.7.614
Google Scholar
Dwyer T., Prota G., Blizzard L., Ashbolt R., Vincensi M. R.: Melanin density and melanin type predict melanocytic naevi in 19–20-year-olds of northern European ancestry. Melanoma Res. 10, 2000, 387–394.
DOI: https://doi.org/10.1097/00008390-200008000-00011
Google Scholar
Emery J. D., Hunter J., Hall P. N., Watson A. J., Moncrieff M., Walter F. M.: Accuracy of SIAscopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatology 10, 2010, 1–9.
DOI: https://doi.org/10.1186/1471-5945-10-9
Google Scholar
Everett M. A., Yeargers E., Sayre R. M., Olson R. L.: Penetration of epidermis by ultraviolet rays. Photochem. Photobiol. 5, 1966, 533–542.
DOI: https://doi.org/10.1111/j.1751-1097.1966.tb09843.x
Google Scholar
Fergusonpell M., Hagisawa S.: An empirical technique to compensate for melanin when monitoring skin microcirculation using reflectance spectrophotometr. Medical Engineering & Physics 17(2), 1995, 104–110.
DOI: https://doi.org/10.1016/1350-4533(95)91880-P
Google Scholar
Govindan K., Smith J., Knowles L., Harvey A., Townsend P., Kenealy J.: Assessment of nurse-led screening of pigmented lesions using SIAscope. J. Plast. Reconstr. Aesthet. Surg. 60(6), 2007, 639–645.
DOI: https://doi.org/10.1016/j.bjps.2006.10.003
Google Scholar
Harrison D. K.: The clinical application of optical spectroscopy in monitoring tissue oxygen supply following cancer treatment. In: Soh K. S., Kang K., Harrison D. (eds): The Primo Vascular System. Springer, New York, NY. [https://doi.org/10.1007/978-1-4614-0601-3_39].
DOI: https://doi.org/10.1007/978-1-4614-0601-3_39
Google Scholar
Jacques S. L., McAuliffe D. J.: The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem Photobiol 53, 1991, 769–775.
DOI: https://doi.org/10.1111/j.1751-1097.1991.tb09891.x
Google Scholar
Khan T. K., Wender P. A., Alkon D. L.: Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents. Journal of Cellular Physiology 233(2), 2018, 1523–1534.
DOI: https://doi.org/10.1002/jcp.26043
Google Scholar
Lee J., Bangerter N., Cunningham C., DiCarlo J., Hu B., Nishimura D.: 3D high resolution skin imaging. Proceedings of the 12th Annual Meeting of ISMRM; Kyoto, Japan, 2004, 094.
Google Scholar
Lee M., Jung Y., Kim E., Kwang Lee H.: Comparison of skin properties in individuals living in cities at two different altitudes: an investigation of the environmental effect on skin. J. Cosmet. Dermatol. 16(1), 2017, 26–34.
DOI: https://doi.org/10.1111/jocd.12270
Google Scholar
Lisenko S., Kugeiko M.: A method for operative quantitative interpretation of multispectral images of biological tissues. Optics and Spectroscopy 115(4), 2013, 610–618.
DOI: https://doi.org/10.1134/S0030400X1310010X
Google Scholar
Lysenko S., Kugeiko M.: Method of noninvasive determination of optical and microphysical parameters of human skin. Measurement Techniques 56(1), 2013, 104–112.
DOI: https://doi.org/10.1007/s11018-013-0166-5
Google Scholar
Maeda T., Arakawa N., Akahashi M., Aizu Y.: Monte Carlo Simulation of spectral reflectance using a multilayered skin tissue model. Optical Review 17(3), 2010, 223–229.
DOI: https://doi.org/10.1007/s10043-010-0040-5
Google Scholar
Meyer L. E, Otberg N., Sterry W., Lademann J.: In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin. J. of Biomedical Optics 11(4), 2006, 044012.
DOI: https://doi.org/10.1117/1.2337294
Google Scholar
Prahl S.: Optical absorption of hemoglobin. Oregon Medical Laser Center, USA, 1998.
Google Scholar
Prince S., Malarvizhi S.: Analysis of spectroscopic diffuse reflectance plots for different skin conditions. Journal of spectroscopy 24(5), 2010, 467–481.
Google Scholar
Prince S., Malarvizhi S.: Spectroscopic diffuse reflectance plots for different skin conditions. Spectroscopy 24, 2010, 467–481.
DOI: https://doi.org/10.1155/2010/791473
Google Scholar
Rajadhyaksha M., Grossman M., Esterowitz D., Webb R. H., Anderson R. R.: In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast. Journal of Investigative Dermatology 104(6), 1995, 946–952.
DOI: https://doi.org/10.1111/1523-1747.ep12606215
Google Scholar
Reuss J. L.: Multilayer modeling of reflectance pulse oximetry. IEEE Transactions on Biomedical Engineering 52(2), 2005.
DOI: https://doi.org/10.1109/TBME.2004.840188
Google Scholar
Suihko C., Swindle L. D., Thomas S. G., Serup J.: Fluorescence fibre-optic confocal microscopy of skin in vivo: microscope and fluorophores, Skin Res. Technol. 11, 2005, 254–267.
DOI: https://doi.org/10.1111/j.0909-725X.2005.00152.x
Google Scholar
Tuchin V. V., Yaroslavsky I. V.: Tissue optics, light distribution, and spectroscopy. Optical Engineering 33(10), 1994, 3180.
DOI: https://doi.org/10.1117/12.178900
Google Scholar
Tuchin V. V.: Light scattering study of tissues. Physics-Uspekhi 40, 1997, 495–515.
DOI: https://doi.org/10.1070/PU1997v040n05ABEH000236
Google Scholar
Tuchin V. V.: Tissue optics and photonics: Biological tissue structures. J. of Biomedical Photonics & Eng., 1(1), 2015.
DOI: https://doi.org/10.18287/JBPE-2015-1-1-3
Google Scholar
Valisuo P.: Photonics simulation and modelling of skin for design of spectrocutometer. Acta Wasaensia 242, Automation Technology 2, Universitas Wasaensis 2011
Google Scholar
Välisuo P., Mantere T., Alander J.: Solving optical skin simulation model parameters using genetic algorithm. 2nd International Conference on BioMedical Engineering and Informatics, 2009, 376–380.
DOI: https://doi.org/10.1109/BMEI.2009.5305146
Google Scholar
van der Mei A.F., Blizzard L., Stankovich J., Ponsonby A. L.: Misclassification due to body hair and seasonal variation on melanin density estimates for skin type using spectrophotometry. Journal of Photochemistry and Photobiology B: Biology 68, 2002, 45–52.
DOI: https://doi.org/10.1016/S1011-1344(02)00331-7
Google Scholar
van Gemert M. J. C., Jacques S. L., Sterenborg H. J. C. M., Star W. M.: Skin optics. IEEE Trans. Biomed. Eng. 36, 1989, 1146–1154.
DOI: https://doi.org/10.1109/10.42108
Google Scholar
Vestergaard M. E., Macaskill P., Holt P. E., Menzies S. W.: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. British Journal of Dermatology 159(3), 2008, 669–676.
DOI: https://doi.org/10.1111/j.1365-2133.2008.08713.x
Google Scholar
Wego A.: Accuracy simulation of an led based spectrophotometer. Optik, 124(7), 2013, 644–649.
DOI: https://doi.org/10.1016/j.ijleo.2012.01.005
Google Scholar
Wilson E. C. F., Emery J. D., Kinmonth A. L., Prevost A. T., Morris H. C., Humphrys E., Hall P. N., Burrows N., Bradshaw L., Walls J., Norris P., Johnson M., Walter F. M.: The cost-effectiveness of a novel SIAscopic diagnostic aid for the management of pigmented skin lesions in primary care. A Decision-Analytic Model, Value in Health 16(2), 2013, 356–366.
DOI: https://doi.org/10.1016/j.jval.2012.12.008
Google Scholar
Young A. R.: Chromophores in human skin. Physics in Medicine and Biology 42(5), 1997, 789–802.
DOI: https://doi.org/10.1088/0031-9155/42/5/004
Google Scholar
Authors
Magdalena Michalskammagamichalska@gmail.com
Lublin University of Technology, Department of Electronics and Information Technology Poland
http://orcid.org/0000-0002-0874-3285
Statistics
Abstract views: 400PDF downloads: 195
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.