The article presents the design of a four-wire, three-level AC/DC converter. The converter was controlled with the use of a proportional-resonant controllers based voltage oriented control (VOC). The implemented topology of the AC/DC converter allows to control each of the phases separately. This translates into the possibility of independent control of active and reactive power in each of the phases. In addition, the DC bus of the AC/DC converter is connected in parallel with the energy storage via an isolated DC/DC converter and with a renewable energy sources. The tests were carried out with the use of the designed converter, DSP controller and Matlab/SIMULNIK platform, which was used for automatic code generation. The results obtained show that independent control of each of the phases is possible, however, the operation with large power unbalances on each of the phases leads to large current pulsation on the DC bus. This is a phenomenon that threatens the correct operation of the energy storage. As a result, the level
of asymmetry between phases should be limited to the level acceptable by the energy storage.


three-level four-wire converter; control of a 4-wire converter; independent power control in each phase; energy storage

Barlik R., Nowak M., Grzejszczak P.: Power transfer analysis in a single phase dual active bridge. Bulletin of the Polish Academy of Sciences: Technical Sciences 61(4), 2013, 809–828 []. DOI:

Brito M. A. G. de, Galotto L., Sampaio L. P., Melo G. d. A. e, Canesin C. A.: Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Transactions on Industrial Electronics 60(3), 2013, 1156–1167. DOI:

Chatterjee A., Mohanty K. B.: Development of stationary frame PR current controller for performance improvement of grid tied PV inverters. 9th International Conference on Industrial and Information Systems (ICIIS), 2014, 1–6 []. DOI:

Govind D., Suryawanshi H. M., Nachankar P., Narayana C. L.: Performance Comparison of Standalone AC Microgrid with Inner Loop Proportional Integral and Proportional Resonant Current Controllers. IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), Nagpur 2020, 1–5 []. DOI:

Grijalva S., Costley M., Ainsworth N.: Prosumer-based control architecture for the future electricity grid. IEEE International Conference on Control Applications, 2011, 28–30 []. DOI:

Ikeda S., Kurokawa F.: Isolated Bidirectional Boost Full Bridge DC-DC Converter for Energy Storage System, 2018 20th European Conference on Power Electronics and Applications, 2018, P.1–P.8. DOI:

Islam S., Zeb K., Din, W., Khan I.: Design of a Proportional Resonant Controller with Resonant Harmonic Compensator and Fault Ride Trough Strategies for a Grid-Connected Photovoltaic System. Electronics 7, 2018, 451. DOI:

Jarzyna W., Zieliński D., Gopakumar K.: An evaluation of the accuracy of inverter sync angle during the grid's disturbances. Metrology and Measurement Systems 27(2), 2020, 355–371 [].

Kumar B. M., Kumar A., Bhat A. H., Agarwal P.: Comparative study of dual active bridge isolated DC to DC converter with single phase shift and dual phase shift control techniques. Recent Developments in Control, Automation & Power Engineering, 2017, 453–458 []. DOI:

Lee J., Jeong Y. and Han B.: A Two-Stage Isolated/Bidirectional DC/DC Converter With Current Ripple Reduction Technique. IEEE Transactions on Industrial Electronics 59(1), 2012, 644–646. DOI:

Patil S. N., Prasad R. C.: Design and development of MPPT algorithm for high efficient DC-DC converter for solar energy system connected to grid. International Conference on Energy Systems and Applications, 2015, 228–233. DOI:

Penghui Jing, Cong Wang, Wei Jiang, Guopeng Zhang.: Performance analysis of isolated three-level half-bridge bidirectional DC/DC converter, Proceedings of 7th International Power Electronics and Motion Control Conference, 2012, 1527–1531 []. DOI:

Praneeth A. V. J. S., Azeez N. A., Patnaik L., Williamson S. S.: Proportional resonant controllers in on-board battery chargers for electric transportation. IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, 2018, 237–242 []. DOI:

Przytuła K., Zieliński D.: Influence of power converters on increasing the share of renewable energy sources. Acta Energetica 1(26), 2016, 125–131 []. DOI:

Wu X., Huang T., Chen X., Hu H., He G.: Frequency Characteristic and Impedance Analysis on Three-Phase Grid-Connected Inverters Based on DDSRF-PLL. 10th International Conference on Power Electronics and ECCE Asia, 2019, 1053–1058. DOI:

Yang Y., Blaabjerg, F.: A new power calculation method for single-phase grid-connected systems. 2013 IEEE International Symposium on Industrial Electronics, 2013, 1–6 []. DOI:

Zieliński D., Lipnicki P, Jarzyna W.: Synchronization of voltage frequency convert-ers with the grid in the presence of notching. International Journal for Computation and Mathematics in Electrical and Electronic Engineering – COMPEL 34(3), 2015, 657–673 []. DOI:


Published : 2021-12-20

Stefańczak, B. (2021). CONTROLLING A FOUR-WIRE THREE-LEVEL AC/DC CONVERTER WITH INDEPENDENT POWER CONTROL IN EVERY PHASE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(4), 51-54.

Bartłomiej Stefańczak
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Electrical Drives and Machines  Poland