CONCEPT OF A SELF-LEARNING WORKPLACE CELL FOR WORKER ASSISTANCE WHILE COLLABORATION WITH A ROBOT WITHIN THE SELF-ADAPTING-PRODUCTION-PLANNING-SYSTEM
Article Sidebar
Open full text
Issue Vol. 9 No. 4 (2019)
-
CONCEPT OF A SELF-LEARNING WORKPLACE CELL FOR WORKER ASSISTANCE WHILE COLLABORATION WITH A ROBOT WITHIN THE SELF-ADAPTING-PRODUCTION-PLANNING-SYSTEM
Johanna Ender, Jan Cetric Wagner, Georg Kunert, Fang Bin Guo, Roland Larek, Thorsten Pawletta4-9
-
DATA-BASED PREDICTION OF SOOT EMISSIONS FOR TRANSIENT ENGINE OPERATION
Michele Schaub10-13
-
APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION
Piotr Wójcicki, Tomasz Zientarski14-17
-
APPLICATION OF ARTIFICIAL NEURAL NETWORK IN THE PROCESS OF SELECTION OF ORGANIC COATINGS
Artur Popko, Konrad Gauda18-21
-
APPLICATION OF OPTICAL PROFILOMETRY IN THE ANALYSIS OF THE DESTRUCTION PROCESS OF RENOVATION ORGANIC COATINGS FOR THE AUTOMOTIVE INDUSTRY
Konrad Gauda, Kamil Pasierbiewicz22-25
-
ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS
Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk26-29
-
MEASUREMENT OF TWO-PHASE GAS-LIQUID FLOW USING STANDARD AND SLOTTED ORIFICE
Barbara Tomaszewska-Wach, Mariusz R. Rząsa, Marcin Majer30-33
-
DETERMINATION OF YOUNG’S DYNAMIC MODULUS OF POLYMER MATERIALS BY RESONANCE VIBRATING-REED METHOD
Volodymyr Mashchenko, Valentine Krivtsov, Volodymyr Kvasnikov, Volodymyr Drevetskiy34-37
-
DETERMINATION OF THE OPTIMAL SCANNING STEP FOR EVALUATION OF IMAGE RECONSTRUCTION QUALITY IN MAGNETOACOUSTIC TOMOGRAPHY WITH MAGNETIC INDUCTION
Adam Ryszard Zywica, Marcin Ziolkowski38-42
-
CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES
Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik43-47
-
A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Tomasz Rymarczyk, Krzysztof Polakowski, Jan Sikora48-51
-
EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR
Jacek Kryszyn, Damian Wanta, Waldemar T. Smolik52-59
-
USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT
Oleg Avrunin, Yana Nosova, Ibrahim Younouss Abdelhamid, Oleksandr Gryshkov, Birgit Glasmacher60-63
-
CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS
Olga Chaikovska, Oleksandr Ponomarenko, Olexandr Dovgan, Igor Rokunets, Sergii Pavlov, Olena Kryvoviaz, Oleg Vlasenko64-68
-
ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS
Viktor Kifer, Natalia Zagorodna, Olena Hevko69-73
-
THE CONCEPT OF A FLYING ELECTROMAGNETIC FIELD MEASURING PLATFORM
Sławomir Szymaniec, Sławomir Szymocha, Łukasz Miszuda74-77
-
LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM
Andrzej Nowrot, Monika Mikołajczyk, Anna Manowska, Joachim Pielot, Antoni Wojaczek78-82
-
IMPROVING THE DYNAMICS OF AN INVERTER-BASED PV GENERATOR DURING LOAD DUMPS
Łukasz Kwaśny83-86
-
MEASUREMENT SYSTEMS FOR THE ENERGY PRODUCED BY THE PHOTOVOLTAIC SYSTEM AND CONSUMED BY THE BUILDING OF THE LUBLIN SCIENCE AND TECHNOLOGY PARK
Arkadiusz Małek87-92
-
DESIGN, CONSTRUCTION AND AUTOMATIC CONTROL SYSTEM OF SINGLE-STAGE SIX-BED ADSORPTION HEAT PUMP
Katarzyna Zwarycz-Makles, Sławomir Jaszczak93-98
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
thorsten.pawletta@hs-wismar.de
Abstract
For some time, the focus of past research on industrial workplace designs has been the optimization of processes from the technological point of view. Since human workers have to work within this environment the design process must regard Human Factor needs. The operators are under additional stress due to the range of high dynamic processes and due to the integration of robots and autonomous operating machines. There have been few studies on how Human Factors influence the design of workplaces for Human-Robot Collaboration (HRC). Furthermore, a comprehensive, systematic and human-centred design solution for industrial workplaces particularly considering Human Factor needs within HRC is widely uncertain and a specific application with reference to production workplaces is missing.
The research findings described in this paper aim the optimization of workplaces for manual production and maintenance processes with respect to the workers within HRC. In order to increase the acceptance of integration of human-robot teams, the concept of the Assisting-Industrial-Workplace-System (AIWS) was developed. As a flexible hybrid cell for HRC integrated into a Self-Adapting-Production-Planning-System (SAPPS) assists the worker while interaction.
Keywords:
References
Bannat A.: Ein Assistenzsystem zur digitalen Werker-Unterstützung in der industriellen Produktion. TU München, 2014.
Bauernhansl T., ten Hompel M., Vogel-Heuser B. (Eds.): Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien, Migration. Springer Vieweg, Wiesbaden 2014. DOI: https://doi.org/10.1007/978-3-658-04682-8
Braseth A. O.: Information-Rich Design: A Concept for Large-Screen Display Graphics: Design Principles and Graphic Elements for Real-World Complex Processes. Norwegian University of Science and Technology, 2015.
Bullinger H.-J.: Ergonomie: Produkt- und Arbeitsplatzgestaltung. Vieweg+Teubner Verlag, Wiesbaden 1994. DOI: https://doi.org/10.1007/978-3-663-12094-0_13
Bullinger-Hoffmann A. C., Mühlstedt J.: Homo Sapiens Digitalis – Virtuelle Ergonomie und digitale Menschmodelle. Springer Vieweg, Wiesbaden 2016. DOI: https://doi.org/10.1007/978-3-662-50459-8
Dostal W., Kamp A.-W., Lahner M., Seessle W. P.: Flexible Fertigungssysteme und Arbeitsplatzstrukturen. W. Kohlhammer GmbH, Stuttgart 1982.
Endsley M. R., Jones D. G.: Designing for situation awareness: An approach to user-centered design. CRC Press, Boca Raton 2011.
Freitag M., Molzow-Voit F., Quandt M., Spöttl G.: Aktuelle Entwicklung der Robotik und ihre Implikationen für den Menschen. In: Molzow-Voit F., Quandt M., Freitag M., Spöttl G. (Eds.): Robotik in der Logistik: Qualifizierung für Fachkräfte und Entscheider. Springer Gabler, Wiesbaden 2016, 9–20. DOI: https://doi.org/10.1007/978-3-658-08575-9_2
Goschke T.: Aktivationstheoretische Ansätze: Motivation, Emotion, Volition. TU Dresden, 2013.
Grendel H., Larek R., Riedel F., Wagner J. C.: Enabling manual assembly and integration of aerospace structures for Industry 4.0 – methods. New Production Technologies in Aerospace Industry: MIC Proceedings 2017, Hannover 2017. DOI: https://doi.org/10.1016/j.promfg.2017.11.004
Hackl B., Wagner M., Attmer L., Baumann D.: New Work: Auf dem Weg zur neuen Arbeitswelt: Management-Impulse, Praxisbeispiele, Studien. Springer Gabler, Wiesbaden 2017. DOI: https://doi.org/10.1007/978-3-658-16266-5
ten Hompel M., Henke M.: Logistik 4.0. in SpringerLink, Industrie 4.0 in Produktion, Automatisierung und Logistik. In: Bauernhansl T., ten Hompel M., Vogel-Heuser B. (Eds.): Anwendung, Technologien, Migration. Springer Vieweg, Wiesbaden 2014, 615–624. DOI: https://doi.org/10.1007/978-3-658-04682-8_32
Kunert G., Pawletta T.: Generating of Task-Based Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning. SNE 28(4), 2018, 149–156. DOI: https://doi.org/10.11128/sne.28.tn.10442
Kunert G., Pawletta T.: Generierung von Steuerungen für Gelenkarmroboter mit simulationsbasiertem Reinforcement-Learning. 24. Symposium Simulationstechnik ASIM 2018, 56, 2018.
Larek R., Grendel H., Wagner J. C., Riedel F.: Industry 4.0 in manual assembly processes – a concept for real time production steering and decision making. Procedia CIRP 79, 2019, 165–169. DOI: https://doi.org/10.1016/j.procir.2019.02.038
Lee J. D., Wickens Ch. D., Liu Y., Boyle L. Ng: An introduction to human factors engineering: A beta version. CreateSpace Independent Publishing Platform, 2017.
Lorenz M., Rüßmann M., Strack R., Lueth K. L., Bolle M.: Man and Machine in Industry 4.0: How Will Technology Transform the Industrial Workforce Through 2025? BCC The Boston Consulting Group, 2015.
Michalos G. et al.: ROBO-PARTNER: Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly Factories of the Future. Procedia CIRP 23, 2014, 71–76. DOI: https://doi.org/10.1016/j.procir.2014.10.079
Molzow-Voit F., Quandt M., Freitag M., Spöttl G. (Eds.): Robotik in der Logistik: Qualifizierung für Fachkräfte und Entscheider. Springer Gabler, Wiesbaden 2016. DOI: https://doi.org/10.1007/978-3-658-08575-9
Norman D. A.: The design of everyday things. Basic Books, New York 2013.
Onnasch L., Maier X., Jürgensohn T.: Mensch-Roboter-Interaktion – Eine Taxonomie für alle Anwendungsfälle. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin 2016.
Sanders E. B.-N., Stappers P. J.: Co-creation and the new landscapes of design. CoDesign 4(1), 2008, 5–18. DOI: https://doi.org/10.1080/15710880701875068
Spath D. et al. (Eds.): Produktionsarbeit der Zukunft – Industrie 4.0: Fraunhofer Verlag, 2013.
Stark J., Mota R. R.C., Sharlin E.: Personal Space Intrusion in Human-Robot Collaboration. Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction – HRI '18, 2018, 245–246. DOI: https://doi.org/10.1145/3173386.3176998
Vogel-Heuser B., Bauernhansl T., ten Hompel M.: Handbuch Industrie 4.0: Produktion. Springer-Verlag GmbH Deutschland, Berlin 2017. DOI: https://doi.org/10.1007/978-3-662-45279-0
Wagner J. C., Larek R., Nüchter A.: Der Maximalnetzplan als Neuinterpretation der Netzplantechnik. Proc. of Wismarer Wirtschaftsinformatik-Tage 11, 2018, 123–136.
Westkämper E., Spath D., Constantinescu C., Lentes J.: Digitale Produktion. Springer-Verlag Berlin Heidelberg, Berlin 2013. DOI: https://doi.org/10.1007/978-3-642-20259-9
Yerkes R. M., Dodson J. D.: The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18(5), 1908, 459–482. DOI: https://doi.org/10.1002/cne.920180503
Ziegler J.: Wearables im industriellen Einsatz: Befähigung zu mobiler IT-gestützter Arbeit durch verteilte tragbare Benutzungsschnittstellen. 2015.
Acatech: Innovationspotenziale der Mensch-Maschine-Interaktion. Herbert Utz Verlag GmbH, Munich 2016.
Acatech: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0: Abschlussbericht des Arbeitskreises Industrie 4.0. Deutschlands Zukunft als Produktionsstandort sichern, Apr. 2013.
AiF Projekt GmbH: ZIM-Erfolgsbeispiel: Exakt montiert – sicher verpackt – zufriedene Kunden. Jan. 2018.
Bundesministerium für Arbeit und Soziales Abteilung Grundsatzfragen des Sozialstaats, der Arbeitswelt und der sozialen Marktwirtschaft: WEISS BUCH Arbeiten 4.0: Arbeit weiter denken. 2017.
Bundesministerium für Bildung und Forschung: Zukunft der Arbeit: Innovationen für die Arbeit von morgen. 2016.
Fraunhofer IAO: Arbeitswelten der Zukunft: Jahresbericht. Fraunhofer-Gesellschaft 2017.
International Ergonomics Association IEA, Definition and Domains of Ergonomics. https://www.iea.cc/ (Available: 25.02.2019).
IXDS Human Industries Venture: Without design, Industry 4.0 will fail: Six challenges where design accelerates successful digital transformation in manufacturing. 2018, https://www.ixds.com/without-design-industry-40-will-fail (Available: 27.06.2018).
KUKA AG: Hello Industrie 4.0 – we go digital. https://www.nebbiolo.tech/wp-content/uploads/KUKA-Industrie-4.0.pdf (Available: 19.06.2018).
Steelcase Inc.: 360°Focus_Creativity: Creativity, Work and the Physical Environment. 17-0005439, 2017.
Article Details
Abstract views: 1030
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
