A GENERATIVE MODEL FOR DEEP FAKE AUGMENTATION OF PHONOCARDIOGRAM AND ELECTROCARDIOGRAM SIGNALS USING LSGAN AND CYCLE GAN
Article Sidebar
Open full text
Issue Vol. 13 No. 4 (2023)
-
A USAGE OF THE IMPEDANCE METHOD FOR DETECTING CIRCULATORY DISORDERS TO DETERMINE THE DEGREE OF LIMB ISCHEMIA
Valerіi Kryvonosov, Oleg Avrunin, Serhii Sander, Volodymyr Pavlov, Liliia Martyniuk, Bagashar Zhumazhanov5-10
-
USAGE OF ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS OF KNEE JOINT DISORDERS
Konrad Witkowski, Mikołaj Wieczorek11-14
-
COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON'S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch15-20
-
AI EMPOWERED DIAGNOSIS OF PEMPHIGUS: A MACHINE LEARNING APPROACH FOR AUTOMATED SKIN LESION DETECTION
Mamun Ahmed, Salma Binta Islam, Aftab Uddin Alif, Mirajul Islam, Sabrina Motin Saima21-26
-
OPTIMIZING ULTRASOUND IMAGE CLASSIFICATION THROUGH TRANSFER LEARNING: FINE-TUNING STRATEGIES AND CLASSIFIER IMPACT ON PRE-TRAINED INNER-LAYERS
Mohamed Bal-Ghaoui, My Hachem El Yousfi Alaoui, Abdelilah Jilbab, Abdennaser Bourouhou27-33
-
A GENERATIVE MODEL FOR DEEP FAKE AUGMENTATION OF PHONOCARDIOGRAM AND ELECTROCARDIOGRAM SIGNALS USING LSGAN AND CYCLE GAN
Swarajya Madhuri Rayavarapu, Tammineni Shanmukha Prasanthi, Gottapu Santosh Kumar, Gottapu Sasibhushana Rao, Gottapu Prashanti34-38
-
SMART OPTIMIZER SELECTION TECHNIQUE: A COMPARATIVE STUDY OF MODIFIED DENSNET201 WITH OTHER DEEP LEARNING MODELS
Kamaran Manguri, Aree A. Mohammed39-43
-
IMPROVEMENT OF THE ALGORITHM FOR SETTING THE CHARACTERISTICS OF INTERPOLATION MONOTONE CURVE
Yuliia Kholodniak, Yevhen Havrylenko, Serhii Halko, Volodymyr Hnatushenko, Olena Suprun, Tatiana Volina, Oleksandr Miroshnyk, Taras Shchur44-50
-
AN ANALYSIS OF THE IMPLEMENTATION OF ACCESSIBILITY TOOLS ON WEBSITES
Marcin Cieśla, Mariusz Dzieńkowski51-56
-
INTERACTION METHOD BETWEEN WEBVIEW OBJECTS IN HYBRID JAVA APPLICATIONS
Denys Ratov, Oleh Zakhozhai57-60
-
BROWSERSPOT – A MULTIFUNCTIONAL TOOL FOR TESTING THE FRONT-END OF WEBSITES AND WEB APPLICATIONS
Szymon Binek, Jakub Góral61-65
-
ADVERTISING BIDDING OPTIMIZATION BY TARGETING BASED ON SELF-LEARNING DATABASE
Roman Kvуetnyy, Yuriy Bunyak, Olga Sofina, Oleksandr Kaduk, Orken Mamyrbayev, Vladyslav Baklaiev, Bakhyt Yeraliyeva66-72
-
THE EFFICIENCY AND RELIABILITY OF BACKEND TECHNOLOGIES: EXPRESS, DJANGO, AND SPRING BOOT
Dominik Choma, Kinga Chwaleba, Mariusz Dzieńkowski73-78
-
CLOUD TECHNOLOGIES IN EDUCATION: THE BIBLIOGRAPHIC REVIEW
Artem Yurchenko, Anzhela Rozumenko, Anatolii Rozumenko, Roman Momot, Olena Semenikhina79-84
-
HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION
Zakaria A. Hamed Alnaish, Safwan O. Hasoon85-92
-
USE OF THE CDE ENVIRONMENT IN TEAM COLLABORATION IN BIM
Andrzej Szymon Borkowski, Jakub Brożyna, Joanna Litwin, Weronika Rączka, Aleksandra Szporanowicz93-98
-
ASYMPTOTICALLY OPTIMAL ALGORITHM FOR PROCESSING SIDE RADIATION SIGNALS FROM MONITOR SCREENS ON LIQUID CRYSTAL STRUCTURES
Dmytro Yevgrafov, Yurii Yaremchuk99-102
-
AC POWER REGULATION TECHNIQUES FOR RENEWABLE ENERGY SOURCES
Mariusz Ostrowski103-108
-
AUTOMATIC ADJUSTMENT OF REACTIVE POWER BY FACTS DEVICES UNDER CONDITIONS OF VOLTAGE INSTABILITY IN THE ELECTRIC NETWORK
Mykhailo Burbelo, Oleksii Babenko, Yurii Loboda, Denys Lebed, Oleg K. Kolesnytskyj, Saule J. Rakhmetullina, Murat Mussabekov109-113
-
VENTILATION CONTROL OF THE NEW SAFE CONFINEMENT OF THE CHORNOBYL NUCLEAR POWER PLANT BASED ON NEURO-FUZZY NETWORKS
Petro Loboda, Ivan Starovit, Oleksii Shushura, Yevhen Havrylko, Maxim Saveliev, Natalia Sachaniuk-Kavets’ka, Oleksandr Neprytskyi, Dina Oralbekova, Dinara Mussayeva114-118
-
MODEL OF THE FLAT FAIRING ANTENNA DIELECTRIC LAYER WITH AERODYNAMIC HEATING
Valerii Kozlovskiy, Valeriy Kozlovskiy, Oleksii Nimych, Lyudmila Klobukova, Natalia Yakymchuk119-125
-
MICROWAVE MIXER ON RECTANGULAR WAVEGUIDES PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova126-131
-
INFORMATION SYSTEM FOR DIAGNOSTIC COMPETITIVENESS OF THE HOSPITALITY INDUSTRY OF THE REGIONS OF UKRAINE
Liudmyla Matviichuk, Olena Liutak, Yuliia Dashchuk, Mykhailo Lepkiy, Svitlana Sidoruk132-138
-
ENVIRONMENTAL AND ECONOMIC ASSESSMENT OF THE LAND USE REGULATION EFFECTIVENESS
Oleksandr Harnaha, Nataliia B. Savina, Volodymyr Hrytsiuk139-141
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
madhurirayavarapu.rs@andhrauniversity.edu.in
prashanthitammineni.rs@andhrauniversity.edu.in
Abstract
In order to diagnose a range of cardiac conditions, it is important to conduct an accurate evaluation of either phonocardiogram (PCG) and electrocardiogram (ECG) data. Artificial intelligence and machine learning-based computer-assisted diagnostics are becoming increasingly commonplace in modern medicine, assisting clinicians in making life-or-death decisions. The requirement for an enormous amount of information for training to establish the framework for a deep learning-based technique is an empirical challenge in the field of medicine. This increases the risk of personal information being misused. As a direct result of this issue, there has been an explosion in the study of methods for creating synthetic patient data. Researchers have attempted to generate synthetic ECG or PCG readings. To balance the dataset, ECG data were first created on the MIT-BIH arrhythmia database using LS GAN and Cycle GAN. Next, using VGGNet, studies were conducted to classify arrhythmias for the synthesized ECG signals. The synthesized signals performed well and resembled the original signal and the obtained precision of 91.20%, recall of 89.52% and an F1 score of 90.35%.
Keywords:
References
Ahmed N., Zhu Y.: Early Detection of Atrial Fibrillation Based on ECG Signals. Bioengineering 7(1), 2020, 16 [http://doi.org/10.3390/bioengineering7010016]. DOI: https://doi.org/10.3390/bioengineering7010016
Akkaradamrongrat S. et al.: Text generation for imbalanced text classification. 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2019, 181–186. DOI: https://doi.org/10.1109/JCSSE.2019.8864181
Aziz S. et al.: Phonocardiogram Signal Processing for Automatic Diagnosis of Congenital Heart Disorders through Fusion of Temporal and Cepstral Features. Sensors 20(13), 2020, 3790 [http://doi.org/10.3390/s20133790]. DOI: https://doi.org/10.3390/s20133790
Bentley P. et al.: Classifying Heart Sounds Challenge. 2011 [http://www.peterjbentley.com/heartchallenge/index.html]
Bouril D. et al.: Automated classification of normal and abnormal heart sounds using support vector machines. Computing in Cardiology Conference – CinC, Vancouver 2016, 549–552. DOI: https://doi.org/10.22489/CinC.2016.158-329
Cayce G. I. et al.: Improved Neural Network Arrhythmia Classification Through Integrated Data Augmentation. IEEE MetroCon, Hurst 2022, 1–3. DOI: https://doi.org/10.1109/MetroCon56047.2022.9971141
England J. R., Cheng P. M.: Artificial intelligence for medical image analysis: a guide for authors and reviewers. American journal of roentgenology 212(3), 2019, 513–519. DOI: https://doi.org/10.2214/AJR.18.20490
Garcea F. et al.: Data augmentation for medical imaging: A systematic literature review. Computers in Biology and Medicine 152, 2023, 106391 [http://doi.org/10.1016/j.compbiomed.2022.106391]. DOI: https://doi.org/10.1016/j.compbiomed.2022.106391
Goldberger A. L. et al.: PhysioBank, PhysioToolkit and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, 2000, 215–220. DOI: https://doi.org/10.1161/01.CIR.101.23.e215
Goodfellow I. et al.: Generative adversarial networks. Communications of the ACM, 63(11), 2020, 139–144 [http://doi.org/10.1145/3422622]. DOI: https://doi.org/10.1145/3422622
Guo G. et al.: Multimodal Emotion Recognition Using CNN-SVM with Data Augmentation. IEEE International Conference on Bioinformatics and Biomedicine, Las Vegas 2022, 3008–3014. DOI: https://doi.org/10.1109/BIBM55620.2022.9994936
Houssein E. H.: ECG signals classification: a review. International Journal of Intelligent Engineering Informatics 5(4), 2017, 376–396. DOI: https://doi.org/10.1504/IJIEI.2017.087944
Judge R., Mangrulkar R.: Heart Sound and Murmur Library. [http://open.umich.edu/education/med/resources/heart-sound-murmur-library/2015].
Khalifa Y et al.: A review of Hidden Markov models and Recurrent Neural Networks for event detection and localization in biomedical signals. Information Fusion 69, 2021, 52–72. DOI: https://doi.org/10.1016/j.inffus.2020.11.008
Li H. et al.: Dual-input neural network integrating feature extraction and deep learning for coronary artery disease detection using electrocardiogram and phonocardiogram. IEEE Access 7, 2019, 146457–146469. DOI: https://doi.org/10.1109/ACCESS.2019.2943197
Li J., Ke L., Du Q., Ding X., Chen X.: Research on the Classification of ECG and PCG Signals Based on BiLSTM-GoogLeNet-DS. Applied Sciences 12(22), 2022, 11762. DOI: https://doi.org/10.3390/app122211762
Liu C. et al.: An open access database for the evaluation of heart sound algorithms. Physiological Measurement 37(12), 2016, 2181. DOI: https://doi.org/10.1088/0967-3334/37/12/2181
Mao X. et al.: Least Squares Generative Adversarial Networks. arXiv, 2017 [http://arxiv.org/abs/1611.04076]. DOI: https://doi.org/10.1109/ICCV.2017.304
Nedoma J. et al.: Comparison of BCG, PCG and ECG signals in application of heart rate monitoring of the human body. 40th International Conference on Telecommunications and Signal Processing – TSP, 2017, 420–424. DOI: https://doi.org/10.1109/TSP.2017.8076019
Rahman, M. M. et al.: A Systematic Survey of Data Augmentation of ECG Signals for AI Applications. Sensors, 23(11), 2023, 5237 [http://doi.org/10.3390/s23115237]. DOI: https://doi.org/10.3390/s23115237
Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, 2015 [http://arxiv.org/abs/1409.1556].
Skandarani Y. et al.: GANs for medical image synthesis: An empirical study. Journal of Imaging 9(3), 2023 [http://doi.org/10.3390/jimaging9030069]. DOI: https://doi.org/10.3390/jimaging9030069
Sreeniwas Kumar A., Nakul S.: Cardiovascular Disease in India: A 360 Degree Overview. Medical Journal Armed Forces India 76(1), 2020, 1–3 [http://doi.org/10.1016/j.mjafi.2019.12.005]. DOI: https://doi.org/10.1016/j.mjafi.2019.12.005
Wang T. C. et al.: High-resolution image synthesis and semantic manipulation with conditional gans. IEEE Conference on computer vision and pattern recognition. Salt Lake City, 2018, 8798–8807. DOI: https://doi.org/10.1109/CVPR.2018.00917
Wu J. L. et al.: A prediction model of stock market trading actions using generative adversarial network and piecewise linear representation approaches. Soft Comput 27, 2023, 8209–8222
[http://doi.org/10.1007/s00500-022-07716-2]. DOI: https://doi.org/10.1007/s00500-022-07716-2
Xiong P. et al.: Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review. Frontiers in Cardiovascular Medicine 9, 2022 [http://doi.org/10.3389/fcvm.2022.860032]. DOI: https://doi.org/10.3389/fcvm.2022.860032
Zhu J. Y. et al.: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv [http://arxiv.org/abs/1703.10593].
Article Details
Abstract views: 285
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
