RADIO FREQUENCY BASED INPAINTING FOR INDOOR LOCALIZATION USING MEMORYLESS TECHNIQUES AND WIRELESS TECHNOLOGY
Article Sidebar
Open full text
Issue Vol. 14 No. 4 (2024)
-
IDENTIFICATION OF AN ARBITRARY SHAPE RIGID OBSTACLE ILLUMINATED BY FLAT ACOUSTIC WAVE USING NEAR FIELD DATA
Tomasz Rymarczyk, Jan Sikora5-9
-
RADIO FREQUENCY BASED INPAINTING FOR INDOOR LOCALIZATION USING MEMORYLESS TECHNIQUES AND WIRELESS TECHNOLOGY
Tammineni Shanmukha Prasanthi, Swarajya Madhuri Rayavarapu, Gottapu Sasibhushana Rao, Raj Kumar Goswami, Gottapu Santosh Kumar10-15
-
INTELLIGENT MATCHING TECHNIQUE FOR FLEXIBLE ANTENNAS
Olena Semenova, Andriy Semenov, Stefan Meulesteen, Natalia Kryvinska, Hanna Pastushenko16-22
-
DIFFERENTIAL MUELLER-MATRIX MAPPING OF THE POLYCRYSTALLINE COMPONENT OF BIOLOGICAL TISSUES OF HUMAN ORGANS
Andrei Padure, Oksana Bakun, Ivan Mikirin, Oleksandr Dubolazov, Iryna Soltys, Oleksandr Olar, Yuriy Ushenko, Oleksandr Ushenko, Irina Palii, Saule Kumargazhanova23-27
-
POLARIZATION SELECTOR ON WAVEGUIDES PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova28-31
-
FUNCTIONALLY INTEGRATED DEVICE FOR TEMPERATURE MEASUREMENT
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Marharyta Rozhdestvenska, Halyna Lastivka32-37
-
STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS
Sunggat Marxuly, Askar Abdykadyrov, Katipa Chezhimbayeva, Nurzhigit Smailov38-45
-
OPTIMIZING WIND POWER PLANTS: COMPARATIVE ENHANCEMENT IN LOW WIND SPEED ENVIRONMENTS
Mustafa Hussein Ibrahim, Muhammed A. Ibrahim, Salam Ibrahim Khather46-51
-
PV SYSTEM MPPT CONTROL: A COMPARATIVE ANALYSIS OF P&O, INCCOND, SMC AND FLC ALGORITHMS
Khoukha Bouguerra, Samia Latreche, Hamza Khemlche, Mabrouk Khemliche52-62
-
DSTATCOM-BASED 15 LEVEL ASYMMETRICAL MULTILEVEL INVERTER FOR IMPROVING POWER QUALITY
Panneerselvam Sundaramoorthi, Govindasamy Saravana Venkatesh63-70
-
COMPUTER SIMULATION OF A SUPERCONDUCTING TRANSFORMER SHORT-CIRCUIT
Leszek Jaroszyński71-74
-
AI-BASED FIELD-ORIENTED CONTROL FOR INDUCTION MOTORS
Elmehdi Benmalek, Marouane Rayyam, Ayoub Gege, Omar Ennasiri, Adil Ezzaidi75-81
-
INVESTIGATION OF CHANGES IN THE LEVEL OF NETWORK SECURITY BASED ON A COGNITIVE APPROACH
Olha Saliieva, Yurii Yaremchuk82-85
-
THE UTILIZATION OF MACHINE LEARNING FOR NETWORK INTRUSION DETECTION SYSTEMS
Ahmad Sanmorino, Herri Setiawan, John Roni Coyanda86-89
-
USING SUPPORT VECTORS TO BUILD A RULE-BASED SYSTEM FOR DETECTING MALICIOUS PROCESSES IN AN ORGANISATION'S NETWORK TRAFFIC
Halyna Haidur, Sergii Gakhov, Dmytro Hamza90-96
-
EXTRACTING EMOTION-CAUSE PAIRS: A BILSTM-DRIVEN METHODOLOGY
Raga Madhuri Chandra, Giri Venkata Sai Tej Neelaiahgari, Satya Sumanth Vanapalli97-103
-
IMPROVING α-PARAMETERIZED DIFFERENTIAL TRANSFORM METHOD WITH DANDELION OPTIMIZER FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS
Mustafa Raed Najeeb, Omar Saber Qasim104-108
-
THE METHOD OF ADAPTIVE STATISTICAL CODING TAKING INTO ACCOUNT THE STRUCTURAL FEATURES OF VIDEO IMAGES
Volodymyr Barannik, Dmytro Havrylov, Serhii Pantas, Yurii Tsimura, Tatayna Belikova, Rimma Viedienieva, Vasyl Kryshtal109-114
-
OPTIMIZING TIME SERIES FORECASTING: LEVERAGING MACHINE LEARNING MODELS FOR ENHANCED PREDICTIVE ACCURACY
Waldemar Wójcik, Assem Shayakhmetova, Ardak Akhmetova, Assel Abdildayeva, Galymzhan Nurtugan115-120
-
SYNCHRONIZATION OF EVENT-DRIVEN MANAGEMENT DURING DATA COLLECTION
Valeriy Kuzminykh, Oleksandr Koval, Yevhen Havrylko, Beibei Xu, Iryna Yepifanova, Shiwei Zhu, Nataliia Bieliaieva, Bakhyt Yeraliyeva121-129
-
INTERFACE LAYOUT VERSUS EFFICIENCY OF INFORMATION ASSIMILATION IN THE LEARNING PROCESS
Julia Zachwatowicz, Oliwia Zioło, Mariusz Dzieńkowski130-135
-
AUTOMATED WATER MANAGEMENT SYSTEM WITH AI-BASED DE-MAND PREDICTION
Arman Mohammad Nakib136-140
-
UML DIAGRAMS OF THE MANAGEMENT SYSTEM OF MAINTENANCE STATIONS
Lyudmila Samchuk, Yuliia Povstiana141-145
-
DEFECT SEVERITY CODE PREDICTION BASED ON ENSEMBLE LEARNING
Ghada Mohammad Tahir Aldabbagh, Safwan Omar Hasoon146-153
-
AFFORDABLE AUGMENTED REALITY FOR SPINE SURGERY: AN EMPIRICAL INVESTIGATION INTO IMPROVING VISUALIZATION AND SURGICAL ACCURACY
Iqra Aslam, Muhammad Jasim Saeed, Zarmina Jahangir, Kanza Zafar, Muhammad Awais Sattar154-163
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
prashanthitammineni.rs@andhrauniversity.edu.in
madhurirayavarapu.rs@andhrauniversity.edu.in
Abstract
Recently, the Internet of Things (IoT) has grown to encompass the surveillance of devices through the utilization of Indoor Positioning Systems (IPS) and Location Based Services (LBS). One commonly used method for developing an Intrusion Prevention System (IPS) is to utilize wireless networks to determine the location of the target. This is achieved by leveraging devices with known positions. Location-based services (LBS) play a vital role in many smart building applications, enabling the creation of efficient and effective work environments. This study examines four memoryless positioning algorithms, namely K-Nearest Neighbour (KNN), Decision tree, Naïve Bayes and Random Forest regressor. The algorithms are compared based on their performance in terms of Mean Square Error, Root Mean Square Error, Mean Absolute Error and R2. A comparative analysis has been conducted to verify the outcomes of different memoryless techniques in Wi-Fi technology. Based on empirical evidence, Naïve Bayes has been determined to be the localization strategy that exhibits the highest level of accuracy. The dataset containing the Received Signal Strength Indicator (RSSI) measurements from all the studies is accessed online.
Keywords:
References
[1] Ahmad T., X. Li J., Seet B.-C.: A self-calibrated centroid localization algorithm for indoor ZigBee WSNs. 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 2016, 455–461 [https://doi.org/10.1109/ICCSN.2016.7587200]. DOI: https://doi.org/10.1109/ICCSN.2016.7587200
[2] Amirisoori S. et al.: Wi-Fi based indoor positioning using fingerprinting methods (KNN algorithm) in real environment. International Journal of Future Generation Communication and Networking 10(9), 2017, 23–36. DOI: https://doi.org/10.14257/ijfgcn.2017.10.9.03
[3] Ge X., Qu Z.: Optimization WIFI indoor positioning KNN algorithm location-based fingerprint. 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2016, 135–137. DOI: https://doi.org/10.1109/ICSESS.2016.7883033
[4] Guo L. et al.: From signal to image: Capturing fine-grained human poses with commodity Wi-Fi. IEEE Communications Letters 24(4), 2019, 802–806. DOI: https://doi.org/10.1109/LCOMM.2019.2961890
[5] Jadhav S. D., Channe H. P.: Comparative study of K-NN, Naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR) 5(1), 2016, 1842–1845. DOI: https://doi.org/10.21275/v5i1.NOV153131
[6] Kato S. et al.: CSI2Image: Image reconstruction from channel state information using generative adversarial networks. IEEE Access 9, 2021, 47154–47168. DOI: https://doi.org/10.1109/ACCESS.2021.3066158
[7] Kefayati M. H., Pourahmadi V., Aghaeinia H.: Wi2Vi: Generating video frames from WiFi CSI samples. IEEE Sensors Journal 20(19), 2020, 11463–11473. DOI: https://doi.org/10.1109/JSEN.2020.2996078
[8] Konings D. et al.: The effects of interference on the RSSI values of a ZigBee based indoor localization system. 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). New Zealand, Auckland, 2017, 1–5 [https://doi.org/10.1109/M2VIP.2017.8211460]. DOI: https://doi.org/10.1109/M2VIP.2017.8211460
[9] Lemic F. et al.: Experimental decomposition of the performance of fingerprinting-based localization algorithms. International Conference on Indoor Positioning and Indoor Navigation (IPIN). Korea (South), Busan, 2014, 355–364 [https://doi.org/10.1109/IPIN.2014.7275503]. DOI: https://doi.org/10.1109/IPIN.2014.7275503
[10] Li Z. et al.: A passive WiFi source localization system based on fine-grained power-based trilateration. IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). USA, Boston, MA, 2015, 1–9 [https://doi.org/10.1109/WoWMoM.2015.7158147]. DOI: https://doi.org/10.1109/WoWMoM.2015.7158147
[11] Lin T.-N., Lin P.-C.: Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. International Conference on Wireless Networks, Communications and Mobile Computing – vol. 2. USA, Maui, HI, 2005, 1569–1574 [https://doi.org/10.1109/WIRLES.2005.1549647]. DOI: https://doi.org/10.1109/WIRLES.2005.1549647
[12] Mackey A. et al.: Improving BLE beacon proximity estimation accuracy through Bayesian filtering. IEEE Internet of Things Journal 7(4), 2020, 3160–3169. DOI: https://doi.org/10.1109/JIOT.2020.2965583
[13] Mustaquim S. M. S. et al.: A resource utilizing approach towards implementing indoor localization using Wi-Fi network. 4th International Conference on Advances in Electrical Engineering (ICAEE). Bangladesh, Dhaka, 2017, 308–313 [https://doi.org/10.1109/ICAEE.2017.8255372]. DOI: https://doi.org/10.1109/ICAEE.2017.8255372
[14] Ou C.-W. et al.: A ZigBee position technique for indoor localization based on proximity learning. IEEE International Conference on Mechatronics and Automation (ICMA). Japan, Takamatsu, 2017, 875–880 [https://doi.org/10.1109/ICMA.2017.8015931]. DOI: https://doi.org/10.1109/ICMA.2017.8015931
[15] Radoi I. et al.: Indoor positioning inside an office building using BLE. 21st International Conference on Control Systems and Computer Science (CSCS). Romania, Bucharest, 2017, 159–164. DOI: https://doi.org/10.1109/CSCS.2017.29
[16] Rezazadeh J. et al.: Novel iBeacon placement for indoor positioning in IoT. IEEE Sensors Journal 18(24), 2018, 10240–10247. DOI: https://doi.org/10.1109/JSEN.2018.2875037
[17] RSSI Fingerprinting Dataset [https://github.com/pspachos/RSSI-Dataset-for-Indoor-Localization-Fingerprinting] (available 10.05.2024).
[18] Rusli M. E. et al.: An improved indoor positioning algorithm based on rssi-trilateration technique for Internet of Things (IoT). International Conference on Computer and Communication Engineering (ICCCE). Malaysia, Kuala Lumpur, 2016, 72–77 [https://doi.org/10.1109/ICCCE.2016.28]. DOI: https://doi.org/10.1109/ICCCE.2016.28
[19] Song Q. et al.: CSI amplitude fingerprinting-based NB-IoT indoor localization. IEEE Internet of Things Journal 5(3), 2017, 1494–1504. DOI: https://doi.org/10.1109/JIOT.2017.2782479
[20] Spachos P., Plataniotis K.: BLE beacons in the smart city: Applications, challenges, and research opportunities. IEEE Internet of Things Magazine 3(1), 2020, 14–18. DOI: https://doi.org/10.1109/IOTM.0001.1900073
[21] Spachos P., Papapanagiotou I., Plataniotis K. N.: Microlocation for smart buildings in the era of the internet of things: A survey of technologies, techniques, and approaches. IEEE Signal Processing Magazine 35(5), 2018, 140–152. DOI: https://doi.org/10.1109/MSP.2018.2846804
[22] Terán M. et al.: IoT-based system for indoor location using Bluetooth low energy. IEEE Colombian Conference on Communications and Computing (COLCOM). Colombia, Cartagena, 2017, 1–6. DOI: https://doi.org/10.1109/ColComCon.2017.8088211
[23] Wang X., Gao L., Mao S.: CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things Journal 3(6), 2016, 1113–1123. DOI: https://doi.org/10.1109/JIOT.2016.2558659
[24] Wu C. et al.: WILL: Wireless indoor localization without site survey. IEEE Transactions on Parallel and Distributed systems 24(4), 2012, 839–848. DOI: https://doi.org/10.1109/TPDS.2012.179
[25] Xue W. et al.: Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal 17(7), 2017, 2224–2230. DOI: https://doi.org/10.1109/JSEN.2017.2660522
[26] Yiu S., Yang K.: Gaussian process assisted fingerprinting localization. IEEE Internet of Things Journal 3(5), 2015, 683–690. DOI: https://doi.org/10.1109/JIOT.2015.2481932
Article Details
Abstract views: 164

