APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION
Piotr Wójcicki
Lublin University of Technology (Poland)
http://orcid.org/0000-0002-0522-6223
Tomasz Zientarski
t.zientarski@pollub.plLublin University of Technology (Poland)
http://orcid.org/0000-0002-1693-5316
Abstract
The article proposes a method of controlling the movement of a group of robots with a model used to describe the interatomic interactions. Molecular dynamics simulations were carried out in a system consisting of a moving groups of robots and fixed obstacles. Both the obstacles and the group of robots consisted of uniform spherical objects. Interactions between the objects are described using the Lennard-Jones potential. During the simulation, an ordered group of robots was released at a constant initial velocity towards the obstacles. The objects’ mutual behaviour was modelled only by changing the value of the interaction strength of the potential. The computer simulations showed that it is possible to find the optimal value of the potential impact parameters that enable the implementation of the assumed robotic behaviour scenarios. Three possible variants of behaviour were obtained: stopping, dispersing and avoiding an obstacle by a group of robots.
Keywords:
swarm, Lennard-Jones potential, molecular dynamics simulationReferences
Alder B. J., Wainwright T. E.: Phase Transition for a Hard Sphere System. Journal of Chemical Physics 27/1957, 1208–1209, [DOI: 10.1063/1.1743957].
DOI: https://doi.org/10.1063/1.1743957
Google Scholar
Blum C., Merkle D.: Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer 2008.
DOI: https://doi.org/10.1007/978-3-540-74089-6
Google Scholar
Brambilla M., Ferrante E., Birattari M., Dorigo M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence 7/2013, 1–41, [DOI: 10.1007/s11721-012-0075-2].
DOI: https://doi.org/10.1007/s11721-012-0075-2
Google Scholar
Engelbretch A. P.: Computational Intelligence, John Wiley and Sons. England 2007.
Google Scholar
Farrelly C., Kell D. B., Knowles J.: Ant Colony Optimalization and Swarm Intelligence. Springer 2008.
Google Scholar
Jones J. E.: On the Determination of Molecular Fields. Royal Society 106/1924, 463–477, [DOI: 10.1098/rspa.1924.0082].
DOI: https://doi.org/10.1098/rspa.1924.0082
Google Scholar
Maxim P. M., Spears W. M., Spears D. F.: Robotic Chain Formations. IFAC Proceedings Volumes 42/2009, 19–24.
DOI: https://doi.org/10.3182/20091006-3-US-4006.00004
Google Scholar
Nouyan S., Dorigo M.: Chain Based Path Formation in Swarms of Robots. ANTS Workshop 2006, 120–131, [DOI:10.1007/11839088_11].
DOI: https://doi.org/10.1007/11839088_11
Google Scholar
Olfati-Saberras R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control 51/2006, 401–420, [DOI: 10.1109/TAC.2005.864190].
DOI: https://doi.org/10.1109/TAC.2005.864190
Google Scholar
Pinciroli C., Birattari M., Tuci E., Dorigo M., et al.: Self-Organizing and Scalable Shape Formation for a Swarm of Pico Satellites. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2008), 2008, 57–61, [DOI: 10.1109/AHS.2008.41].
DOI: https://doi.org/10.1109/AHS.2008.41
Google Scholar
Shimizu M., Ishiguro A., Kawakatsu T., Masubuchi Y., Doi M.: Coherent Swarming from Local Interaction by Exploiting Molecular Dynamics and Stokesian Dynamics Methods. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), 2003, 1614–1619, [DOI: 10.1109/IROS.2003.1248875].
DOI: https://doi.org/10.1109/IROS.2003.1248875
Google Scholar
Son J. H., Ahn H. S., Cha J.: Lennard-Jones potential field-based swarm systems for aggregation and obstacle avoidance. International Conference on Control, Automation and Systems (ICCAS 2017), 2017, 1068–1072, [DOI: 10.23919/ICCAS.2017.8204374].
DOI: https://doi.org/10.23919/ICCAS.2017.8204374
Google Scholar
Stukowski A.: Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 18/2009, 015012, [DOI: 10.1088/0965-0393/18/1/015012].
DOI: https://doi.org/10.1088/0965-0393/18/1/015012
Google Scholar
Suárez P., Iglesias A., Gálvez A.: Make robots be bats: specializing robotic swarms to the Bat algorithm. Swarm and Evolutionary Computation 44/2019, 113–129, [DOI: 10.1016/j.swevo.2018.01.005].
DOI: https://doi.org/10.1016/j.swevo.2018.01.005
Google Scholar
Sydney N., Paley D.A., Sofge, D.: Physics-inspired motion planning for information-theoretic target detection using multiple aerial robots. Autonomous Robots 41/2017, 231–241, [DOI: 10.1007/s10514-015-9542-0].
DOI: https://doi.org/10.1007/s10514-015-9542-0
Google Scholar
Authors
Tomasz Zientarskit.zientarski@pollub.pl
Lublin University of Technology Poland
http://orcid.org/0000-0002-1693-5316
Statistics
Abstract views: 469PDF downloads: 269
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Tomasz Zientarski, Marek Miłosz, Marek Kamiński, Maciej Kołodziej, APPLICABILITY ANALYSIS OF REST AND SOAP WEB SERVICES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Piotr Wójcicki, Paweł Powroźnik, Kamil Żyła, Stanisław Grzegórski, INFLUENCE OF MOBILE ROBOT CONTROL ALGORITHMS ON THE PROCESS OF AVOIDING OBSTACLES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 4 (2018)