APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION

Piotr Wójcicki


Lublin University of Technology (Poland)
http://orcid.org/0000-0002-0522-6223

Tomasz Zientarski

t.zientarski@pollub.pl
Lublin University of Technology (Poland)
http://orcid.org/0000-0002-1693-5316

Abstract

The article proposes a method of controlling the movement of a group of robots with a model used to describe the interatomic interactions. Molecular dynamics simulations were carried out in a system consisting of a moving groups of robots and fixed obstacles. Both the obstacles and the group of robots consisted of uniform spherical objects. Interactions between the objects are described using the Lennard-Jones potential. During the simulation, an ordered group of robots was released at a constant initial velocity towards the obstacles. The objects’ mutual behaviour was modelled only by changing the value of the interaction strength of the potential. The computer simulations showed that it is possible to find the optimal value of the potential impact parameters that enable the implementation of the assumed robotic behaviour scenarios. Three possible variants of behaviour were obtained: stopping, dispersing and avoiding an obstacle by a group of robots.


Keywords:

swarm, Lennard-Jones potential, molecular dynamics simulation

Alder B. J., Wainwright T. E.: Phase Transition for a Hard Sphere System. Journal of Chemical Physics 27/1957, 1208–1209, [DOI: 10.1063/1.1743957].
DOI: https://doi.org/10.1063/1.1743957   Google Scholar

Blum C., Merkle D.: Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer 2008.
DOI: https://doi.org/10.1007/978-3-540-74089-6   Google Scholar

Brambilla M., Ferrante E., Birattari M., Dorigo M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence 7/2013, 1–41, [DOI: 10.1007/s11721-012-0075-2].
DOI: https://doi.org/10.1007/s11721-012-0075-2   Google Scholar

Engelbretch A. P.: Computational Intelligence, John Wiley and Sons. England 2007.
  Google Scholar

Farrelly C., Kell D. B., Knowles J.: Ant Colony Optimalization and Swarm Intelligence. Springer 2008.
  Google Scholar

Jones J. E.: On the Determination of Molecular Fields. Royal Society 106/1924, 463–477, [DOI: 10.1098/rspa.1924.0082].
DOI: https://doi.org/10.1098/rspa.1924.0082   Google Scholar

Maxim P. M., Spears W. M., Spears D. F.: Robotic Chain Formations. IFAC Proceedings Volumes 42/2009, 19–24.
DOI: https://doi.org/10.3182/20091006-3-US-4006.00004   Google Scholar

Nouyan S., Dorigo M.: Chain Based Path Formation in Swarms of Robots. ANTS Workshop 2006, 120–131, [DOI:10.1007/11839088_11].
DOI: https://doi.org/10.1007/11839088_11   Google Scholar

Olfati-Saberras R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control 51/2006, 401–420, [DOI: 10.1109/TAC.2005.864190].
DOI: https://doi.org/10.1109/TAC.2005.864190   Google Scholar

Pinciroli C., Birattari M., Tuci E., Dorigo M., et al.: Self-Organizing and Scalable Shape Formation for a Swarm of Pico Satellites. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2008), 2008, 57–61, [DOI: 10.1109/AHS.2008.41].
DOI: https://doi.org/10.1109/AHS.2008.41   Google Scholar

Shimizu M., Ishiguro A., Kawakatsu T., Masubuchi Y., Doi M.: Coherent Swarming from Local Interaction by Exploiting Molecular Dynamics and Stokesian Dynamics Methods. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), 2003, 1614–1619, [DOI: 10.1109/IROS.2003.1248875].
DOI: https://doi.org/10.1109/IROS.2003.1248875   Google Scholar

Son J. H., Ahn H. S., Cha J.: Lennard-Jones potential field-based swarm systems for aggregation and obstacle avoidance. International Conference on Control, Automation and Systems (ICCAS 2017), 2017, 1068–1072, [DOI: 10.23919/ICCAS.2017.8204374].
DOI: https://doi.org/10.23919/ICCAS.2017.8204374   Google Scholar

Stukowski A.: Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 18/2009, 015012, [DOI: 10.1088/0965-0393/18/1/015012].
DOI: https://doi.org/10.1088/0965-0393/18/1/015012   Google Scholar

Suárez P., Iglesias A., Gálvez A.: Make robots be bats: specializing robotic swarms to the Bat algorithm. Swarm and Evolutionary Computation 44/2019, 113–129, [DOI: 10.1016/j.swevo.2018.01.005].
DOI: https://doi.org/10.1016/j.swevo.2018.01.005   Google Scholar

Sydney N., Paley D.A., Sofge, D.: Physics-inspired motion planning for information-theoretic target detection using multiple aerial robots. Autonomous Robots 41/2017, 231–241, [DOI: 10.1007/s10514-015-9542-0].
DOI: https://doi.org/10.1007/s10514-015-9542-0   Google Scholar

Download


Published
2019-12-15

Cited by

Wójcicki, P., & Zientarski, T. (2019). APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 14–17. https://doi.org/10.35784/iapgos.45

Authors

Piotr Wójcicki 

Lublin University of Technology Poland
http://orcid.org/0000-0002-0522-6223

Authors

Tomasz Zientarski 
t.zientarski@pollub.pl
Lublin University of Technology Poland
http://orcid.org/0000-0002-1693-5316

Statistics

Abstract views: 469
PDF downloads: 269