STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS

Sunggat Marxuly

Sungat50@gmail.com
Kazakh National Research Technical University named after K. Satbayev (Kazakhstan)
https://orcid.org/0000-0002-7330-5927

Askar Abdykadyrov


Kazakh National Research Technical University named K. Satbayev (Kazakhstan)
https://orcid.org/0000-0003-1143-4675

Katipa Chezhimbayeva


Almaty University of Power Engineering and Telecommunications named after G.Daukeev (Kazakhstan)

Nurzhigit Smailov


Kazakh National Research Technical University named after K. Satbayev (Kazakhstan)

Abstract

In research work the problem of studying the process of ozone control with the help of electronic sensors is considered. In research work, special sensors were used, which are formed around coronary electrodes in the ozonator and to monitor the concentration of ozone in the room. This is because ozone is known to adversely affect human health if its maximum permissible air concentration exceeds 0.16 mg/m3. A small system of ozonators was developed in a special laboratory, theoretical and experimental tests were carried out. In practice, the obtained data and the electric diagram of the ozonator (on the ARDUINO platform) were collected. "Prana Air" sensors and current sensors were used to accurately determine the ozone (O3) concentration around the ozone nozzle to measure the current at the electrodes.


Keywords:

ozone control, sensors, control systems, electric discharge, machine learning, monitoring

[1] Abdykadyrov A. et al.: Purification of surface water by using the corona discharge method. Mining of Mineral Deposits, 18 (1), 2024, 125–137. [https://doi.org/10.33271/mining18.01.125].
DOI: https://doi.org/10.33271/mining18.01.125   Google Scholar

[2] Abdykadyrov A., Kalandarov P., Marxuly S., Zhunussov K., Sharipova G., Sabyrova A., Akylzhan P., Uzak M.: Study of the process of neutralization of microorganisms in drinking water exposed to environmental problems. Water Conservation and Management, 8(3), 2024, 352–361 [https://doi.org/10.26480/wcm.03.2024.352.361].
  Google Scholar

[3] Agarwala R., Wang P., Bishop H. L., Dissanayake A., Calhoun B. H.: A 0.6V 785-nW Multimodal Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring. IEEE Journal of Solid-State Circuits 56(4), 2021, 1058–1070 [https://doi.org/10.1109/JSSC.2021.3057229].
DOI: https://doi.org/10.1109/JSSC.2021.3057229   Google Scholar

[4] Contaret T., Seguin J.-L., Menini P., Aguir K.: Physical-Based Characterization of Noise Responses in Metal-Oxide Gas Sensors. IEEE Sensors Journal 13(3), 2013, 980–986 [https://doi.org/10.1109/JSEN.2012.2227707].
DOI: https://doi.org/10.1109/JSEN.2012.2227707   Google Scholar

[5] Costilla-Reyes O., Scully P., Ozanyan K. B.: Deep neural networks for learning spatio-temporal features from tomography sensors. IEEE Transactions on Industrial Electronics 65(1), 2018, 645–653 [https://doi.org/10.1109/TIE.2017.2716907].
DOI: https://doi.org/10.1109/TIE.2017.2716907   Google Scholar

[6] Dairi A., Harrou F., Senouci M., Sun Y.: Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robotics and Autonomous Systems 100, 2018, 287–301.
DOI: https://doi.org/10.1016/j.robot.2017.11.014   Google Scholar

[7] Degner M., Damaschke N., Ewald H., Lewis E.: High resolution LED-spectroscopy for sensor application in harsh environment. IEEE Instrumentation & Measurement Technology Conference Proceedings. USA, Austin, TX, 2010, 1382–1386 [https://doi.org/10.1109/IMTC.2010.5488239].
DOI: https://doi.org/10.1109/IMTC.2010.5488239   Google Scholar

[8] Degner M., Damaschke N., Ewald H., O'Keeffe S., Lewis E.: UV LED-based fiber coupled optical sensor for detection of ozone in the ppm and ppb range. IEEE SENSORS, Christchurch, New Zealand, 2009, 95–99 [https://doi.org/10.1109/ICSENS.2009.5398230].
DOI: https://doi.org/10.1109/ICSENS.2009.5398230   Google Scholar

[9] Doll T., Fuchs A., Eisele I., Faglia G., Groppelli S., Sberveglieri G.: Room temperature ozone sensing with conductivity and work function sensors based on indium oxide. Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97), 1997 [https://doi.org/10.1109/SENSOR.1997.613716].
DOI: https://doi.org/10.1109/SENSOR.1997.613716   Google Scholar

[10] Egorov I., Esipov V., Remnev G., Kaikanov M., Lukonin E., Poloskov A.: A high-repetition rate pulsed electron accelerator. IEEE Transactions on Dielectrics and Electrical Insulation 20(4), 2013, 1334–1339 [https://doi.org/10.1109/TDEI.2013.6571453].
DOI: https://doi.org/10.1109/TDEI.2013.6571453   Google Scholar

[11] Faleh R., Othman M., Kachouri A., Aguir K.: Recognition of O3 concentration using WO3 gas sensor and principal component analysis. 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2014, 322–327 [https://doi.org/10.1109/ATSIP.2014.6834629].
DOI: https://doi.org/10.1109/ATSIP.2014.6834629   Google Scholar

[12] Fechete A. C., Wlodarski W. B., Kalantar-zadeh K., Holland A. S., Wisistsora-at A.: Ozone Sensors based on Layered SAW Devices with: InOx/SiNx/36° YX LiTaO3 Structure. TENCON 2005–2005 IEEE Region 10 Conference, Melbourne, 2005, 1–4 [https://doi.org/10.1109/TENCON.2005.301325].
DOI: https://doi.org/10.1109/TENCON.2005.301325   Google Scholar

[13] Ghazaly C., Guillemot M., Castel B., Langlois E., Etienne M., Hebrant M.: Real-Time Optical Ozone Sensor for Occupational Exposure Assessment. 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, 1403–1406 [https://doi.org/10.1109/TRANSDUCERS.2019.8808516].
DOI: https://doi.org/10.1109/TRANSDUCERS.2019.8808516   Google Scholar

[14] Harrou F., Dairi A., Sun Y., Senouci M.: Reliable detection of abnormal ozone measurements using an air quality sensors network. IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 2018 [https://doi.org/10.1109/EE1.2018.8385265].
DOI: https://doi.org/10.1109/EE1.2018.8385265   Google Scholar

[15] Harrou F., Nounou M., Nounou H.: Statistical detection of abnormal ozone levels using principal component analysis. International Journal of Engineering & Technology 12(6), 2012, 54–59.
  Google Scholar

[16] Jia Y., Wu J., Du Y.: Traffic speed prediction using deep learning method. IEEE 19th International Conference Intelligent Transportation Systems (ITSC), 2016, 1217–1222.
DOI: https://doi.org/10.1109/ITSC.2016.7795712   Google Scholar

[17] Kanokwan R., Chaiwas S., Nantivatana P., Kocharoen P., Thaenkaew S., Tansriwong S.: Efficiency evaluation of ozone gas concentration generation by commercial ozone generator for disinfection in residential buildings. International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022 [https://doi.org/10.1109/iEECON53204.2022.9741631].
DOI: https://doi.org/10.1109/iEECON53204.2022.9741631   Google Scholar

[18] Koesdwiady A., Soua R., Karray F.: Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE Transactions on Vehicular Technology 65(12), 2016, 9508–9517.
DOI: https://doi.org/10.1109/TVT.2016.2585575   Google Scholar

[19] Latif T., Dieffenderfer J., Tanneeru A., Lee B., Misra V., Bozkurt A.: Evaluation of Environmental Enclosures for Effective Ambient Ozone Sensing in Wrist-worn Health and Exposure Trackers. IEEE Sensors. Australia, Sydney, 2021 [https://doi.org/10.1109/SENSORS47087.2021.9639530].
DOI: https://doi.org/10.1109/SENSORS47087.2021.9639530   Google Scholar

[20] Lunin V. V., Popovich M. P., Tkachenko S. N.: Physical chemistry of ozone. Max Press, Moscow, 2019.
  Google Scholar

[21] Lunin V. V., Samoilovich V. G., Tkachenko S. N., Tkachenko I. S.: Theory and practice of obtaining and applying ozone. Moscow University Press, Moscow 2016.
  Google Scholar

[22] Luqueta G. R., Santos E. D., Pessoa R. S., Maciel H. S.: Wireless Sensor Network to Monitoring an Ozone Sterilizer. IEEE Latin America Transactions 14(5), 2016, 2167–2174 [https://doi.org/10.1109/TLA.2016.7530410].
DOI: https://doi.org/10.1109/TLA.2016.7530410   Google Scholar

[23] Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of populated areas. Hygienic standards 2.1.6.1338-03. Ministry of Health of Russia, Moscow 2003
  Google Scholar

[https://files.stroyinf.ru/Data2/1/4294814/4294814669.pdf].
  Google Scholar

[24] Mischo M., Bitterling M., Himmerlich M., Krischok S., Ambacher O., Cimalla V.: Seebeck ozone sensors. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), 2013 [https://doi.org/10.1109/Transducers.2013.6627100].
DOI: https://doi.org/10.1109/Transducers.2013.6627100   Google Scholar

[25] Mukhopadhyay S., Sahu S. K.: A Bayesian spatiotemporal model to estimate long-term exposure to outdoor air pollution at coarser administrative geographies in England and Wales. Journal of the Royal Statistical Society Series A: Statistics in Society 181(2), 2018, 465–486 [https://doi.org/10.1111/rssa.12299].
DOI: https://doi.org/10.1111/rssa.12299   Google Scholar

[26] Nawahda A.: An assessment of adding value of traffic information and other attributes as part of its classifiers in a data mining tool set for predicting surface ozone levels. Process Safety and Environmental Protection 99, 2016, 149–158.
DOI: https://doi.org/10.1016/j.psep.2015.11.004   Google Scholar

[27] Okafor N. U., Delaney D. T.: Application of Machine Learning Techniques for the Calibration of Low-cost IoT Sensors in Environmental Monitoring Networks. IEEE 6th World Forum on Internet of Things (WF-IoT). USA, New Orleans, LA, 2020 [https://doi.org/10.1109/WF-IoT48130.2020.9221246].
DOI: https://doi.org/10.1109/WF-IoT48130.2020.9221246   Google Scholar

[28] O'Keeffe S., Fitzpatrick C., Lewis E.: Ozone Measurement Using Optical Fibre Sensors in the Visible Region. IEEE SENSORS, Irvine, CA, USA, 2005, [https://doi.org/10.1109/ICSENS.2005.1597810].
DOI: https://doi.org/10.1109/ICSENS.2005.1597810   Google Scholar

[29] Pan C., Yan B., Flynn L., Beck T., Jin X., Buckner S.: Ozone Mapper Profiler Suite Nadir Profiler Degradation. IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022). Malaysia, Kuala Lumpur, 2022, 7348–7350 [https://doi.org/10.1109/IGARSS46834.2022.9883681].
DOI: https://doi.org/10.1109/IGARSS46834.2022.9883681   Google Scholar

[30] Parameswaran K. R., Sonnenfroh D. M.: Compact ozone photometer based on UV LEDs. 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 2010, 375–376 [https://doi.org/10.1109/PHOTONICS.2010.5698916].
DOI: https://doi.org/10.1109/PHOTONICS.2010.5698916   Google Scholar

[31] Petani L., Wickersheim D., Koker L., Reischl M., Gengenbach U., Pylatiuk C.: Experimental Setup for Evaluation of Medical Ozone Gas Sensors. IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 2022 [https://doi.org/10.1109/SAS54819.2022.9881340].
DOI: https://doi.org/10.1109/SAS54819.2022.9881340   Google Scholar

[32] Pichugin Yu. P.: Evaluation of geometric and temperature parameters of micro-discharges in a barrier discharge. Bulletin of the Chuvash University 3, 2011, 102–107.
  Google Scholar

[33] Rahmat S. et al.: The Correlation Among Ozone Gases, Hissing Frequency, and Ultraviolet Light in Corona Effects. 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). Indonesia, Yogyakarta, 2022, 74–78 [https://doi.org/10.1109/ICE3IS56585.2022.10010024].
DOI: https://doi.org/10.1109/ICE3IS56585.2022.10010024   Google Scholar

[34] Raiser Yu. P.: Physics of a gas discharge. Scientific publication. Publishing House "Intellect", Dolgoprudny 2009.
  Google Scholar

[35] Ravì D., Wong C., Deligianni F., Berthelot M., Andreu-Perez J., Lo B., Yang G.-Z.: Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics 21(1), 2017, 4–21.
DOI: https://doi.org/10.1109/JBHI.2016.2636665   Google Scholar

[36] Rissanen M. P. et al.: The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. Journal of the American Chemical Society 136(44), 2014, 15596–15606.
DOI: https://doi.org/10.1021/ja507146s   Google Scholar

[37] Shaban K. B., Kadri A., Rezk E.: Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal 16(8), 2016, 2598–2606.
DOI: https://doi.org/10.1109/JSEN.2016.2514378   Google Scholar

[38] Shaddick G., Wakefield J.: Modelling daily multivariate pollutant data at multiple sites. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51(3), 2002, 351–372.
DOI: https://doi.org/10.1111/1467-9876.00273   Google Scholar

[39] Sung T.-L.: Direct Measurement of Metal Surface Temperature During Catalytic Dissociation of Ozone for Sensor Application. IEEE Transactions on Plasma Science 42(12), 2014, 3842–3846 [https://doi.org/10.1109/TPS.2014.2350000].
DOI: https://doi.org/10.1109/TPS.2014.2350000   Google Scholar

[40] Suryono S., Khuriati A.: Mobile Measurement System of Ozone Concentration in Urban Areas. Third International Conference on Informatics and Computing (ICIC), Palembang, Indonesia, 2018 [https://doi.org/10.1109/IAC.2018.8780449].
DOI: https://doi.org/10.1109/IAC.2018.8780449   Google Scholar

[41] Wang J., Zhang X., Gao Q., Yue H., Wang H.: Device-free wireless localization and activity recognition: A deep learning approach. IEEE Transactions on Vehicular Technology 66(7), 2017, 6258–6267.
DOI: https://doi.org/10.1109/TVT.2016.2635161   Google Scholar

[42] Wang Z. et al.: Ozone senosr using ZnO based film bulk acoustic resonator. 16th International Solid-State Sensors, Actuators and Microsystems Conference, China, Beijing, 2011, 1124–1127 [https://doi.org/10.1109/TRANSDUCERS.2011.5969275].
DOI: https://doi.org/10.1109/TRANSDUCERS.2011.5969275   Google Scholar

[43] Wen H., Xiao Z., Markham A., Trigoni N.: Accuracy estimation for sensor systems. IEEE Transactions on Mobile Computing 14(7), 2015, 1330–1343.
DOI: https://doi.org/10.1109/TMC.2014.2352262   Google Scholar

Download


Published
2024-12-21

Cited by

Marxuly, S., Abdykadyrov, A., Chezhimbayeva, K., & Smailov, N. (2024). STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(4), 38–45. https://doi.org/10.35784/iapgos.6051

Authors

Sunggat Marxuly 
Sungat50@gmail.com
Kazakh National Research Technical University named after K. Satbayev Kazakhstan
https://orcid.org/0000-0002-7330-5927

Authors

Askar Abdykadyrov 

Kazakh National Research Technical University named K. Satbayev Kazakhstan
https://orcid.org/0000-0003-1143-4675

Authors

Katipa Chezhimbayeva 

Almaty University of Power Engineering and Telecommunications named after G.Daukeev Kazakhstan

Authors

Nurzhigit Smailov 

Kazakh National Research Technical University named after K. Satbayev Kazakhstan

Statistics

Abstract views: 85
PDF downloads: 76


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)