STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS
Sunggat Marxuly
Sungat50@gmail.comKazakh National Research Technical University named after K. Satbayev (Kazakhstan)
https://orcid.org/0000-0002-7330-5927
Askar Abdykadyrov
Kazakh National Research Technical University named K. Satbayev (Kazakhstan)
https://orcid.org/0000-0003-1143-4675
Katipa Chezhimbayeva
Almaty University of Power Engineering and Telecommunications named after G.Daukeev (Kazakhstan)
Nurzhigit Smailov
Kazakh National Research Technical University named after K. Satbayev (Kazakhstan)
Abstract
In research work the problem of studying the process of ozone control with the help of electronic sensors is considered. In research work, special sensors were used, which are formed around coronary electrodes in the ozonator and to monitor the concentration of ozone in the room. This is because ozone is known to adversely affect human health if its maximum permissible air concentration exceeds 0.16 mg/m3. A small system of ozonators was developed in a special laboratory, theoretical and experimental tests were carried out. In practice, the obtained data and the electric diagram of the ozonator (on the ARDUINO platform) were collected. "Prana Air" sensors and current sensors were used to accurately determine the ozone (O3) concentration around the ozone nozzle to measure the current at the electrodes.
Keywords:
ozone control, sensors, control systems, electric discharge, machine learning, monitoringReferences
[1] Abdykadyrov A. et al.: Purification of surface water by using the corona discharge method. Mining of Mineral Deposits, 18 (1), 2024, 125–137. [https://doi.org/10.33271/mining18.01.125].
DOI: https://doi.org/10.33271/mining18.01.125
Google Scholar
[2] Abdykadyrov A., Kalandarov P., Marxuly S., Zhunussov K., Sharipova G., Sabyrova A., Akylzhan P., Uzak M.: Study of the process of neutralization of microorganisms in drinking water exposed to environmental problems. Water Conservation and Management, 8(3), 2024, 352–361 [https://doi.org/10.26480/wcm.03.2024.352.361].
Google Scholar
[3] Agarwala R., Wang P., Bishop H. L., Dissanayake A., Calhoun B. H.: A 0.6V 785-nW Multimodal Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring. IEEE Journal of Solid-State Circuits 56(4), 2021, 1058–1070 [https://doi.org/10.1109/JSSC.2021.3057229].
DOI: https://doi.org/10.1109/JSSC.2021.3057229
Google Scholar
[4] Contaret T., Seguin J.-L., Menini P., Aguir K.: Physical-Based Characterization of Noise Responses in Metal-Oxide Gas Sensors. IEEE Sensors Journal 13(3), 2013, 980–986 [https://doi.org/10.1109/JSEN.2012.2227707].
DOI: https://doi.org/10.1109/JSEN.2012.2227707
Google Scholar
[5] Costilla-Reyes O., Scully P., Ozanyan K. B.: Deep neural networks for learning spatio-temporal features from tomography sensors. IEEE Transactions on Industrial Electronics 65(1), 2018, 645–653 [https://doi.org/10.1109/TIE.2017.2716907].
DOI: https://doi.org/10.1109/TIE.2017.2716907
Google Scholar
[6] Dairi A., Harrou F., Senouci M., Sun Y.: Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robotics and Autonomous Systems 100, 2018, 287–301.
DOI: https://doi.org/10.1016/j.robot.2017.11.014
Google Scholar
[7] Degner M., Damaschke N., Ewald H., Lewis E.: High resolution LED-spectroscopy for sensor application in harsh environment. IEEE Instrumentation & Measurement Technology Conference Proceedings. USA, Austin, TX, 2010, 1382–1386 [https://doi.org/10.1109/IMTC.2010.5488239].
DOI: https://doi.org/10.1109/IMTC.2010.5488239
Google Scholar
[8] Degner M., Damaschke N., Ewald H., O'Keeffe S., Lewis E.: UV LED-based fiber coupled optical sensor for detection of ozone in the ppm and ppb range. IEEE SENSORS, Christchurch, New Zealand, 2009, 95–99 [https://doi.org/10.1109/ICSENS.2009.5398230].
DOI: https://doi.org/10.1109/ICSENS.2009.5398230
Google Scholar
[9] Doll T., Fuchs A., Eisele I., Faglia G., Groppelli S., Sberveglieri G.: Room temperature ozone sensing with conductivity and work function sensors based on indium oxide. Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97), 1997 [https://doi.org/10.1109/SENSOR.1997.613716].
DOI: https://doi.org/10.1109/SENSOR.1997.613716
Google Scholar
[10] Egorov I., Esipov V., Remnev G., Kaikanov M., Lukonin E., Poloskov A.: A high-repetition rate pulsed electron accelerator. IEEE Transactions on Dielectrics and Electrical Insulation 20(4), 2013, 1334–1339 [https://doi.org/10.1109/TDEI.2013.6571453].
DOI: https://doi.org/10.1109/TDEI.2013.6571453
Google Scholar
[11] Faleh R., Othman M., Kachouri A., Aguir K.: Recognition of O3 concentration using WO3 gas sensor and principal component analysis. 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2014, 322–327 [https://doi.org/10.1109/ATSIP.2014.6834629].
DOI: https://doi.org/10.1109/ATSIP.2014.6834629
Google Scholar
[12] Fechete A. C., Wlodarski W. B., Kalantar-zadeh K., Holland A. S., Wisistsora-at A.: Ozone Sensors based on Layered SAW Devices with: InOx/SiNx/36° YX LiTaO3 Structure. TENCON 2005–2005 IEEE Region 10 Conference, Melbourne, 2005, 1–4 [https://doi.org/10.1109/TENCON.2005.301325].
DOI: https://doi.org/10.1109/TENCON.2005.301325
Google Scholar
[13] Ghazaly C., Guillemot M., Castel B., Langlois E., Etienne M., Hebrant M.: Real-Time Optical Ozone Sensor for Occupational Exposure Assessment. 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, 1403–1406 [https://doi.org/10.1109/TRANSDUCERS.2019.8808516].
DOI: https://doi.org/10.1109/TRANSDUCERS.2019.8808516
Google Scholar
[14] Harrou F., Dairi A., Sun Y., Senouci M.: Reliable detection of abnormal ozone measurements using an air quality sensors network. IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 2018 [https://doi.org/10.1109/EE1.2018.8385265].
DOI: https://doi.org/10.1109/EE1.2018.8385265
Google Scholar
[15] Harrou F., Nounou M., Nounou H.: Statistical detection of abnormal ozone levels using principal component analysis. International Journal of Engineering & Technology 12(6), 2012, 54–59.
Google Scholar
[16] Jia Y., Wu J., Du Y.: Traffic speed prediction using deep learning method. IEEE 19th International Conference Intelligent Transportation Systems (ITSC), 2016, 1217–1222.
DOI: https://doi.org/10.1109/ITSC.2016.7795712
Google Scholar
[17] Kanokwan R., Chaiwas S., Nantivatana P., Kocharoen P., Thaenkaew S., Tansriwong S.: Efficiency evaluation of ozone gas concentration generation by commercial ozone generator for disinfection in residential buildings. International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022 [https://doi.org/10.1109/iEECON53204.2022.9741631].
DOI: https://doi.org/10.1109/iEECON53204.2022.9741631
Google Scholar
[18] Koesdwiady A., Soua R., Karray F.: Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE Transactions on Vehicular Technology 65(12), 2016, 9508–9517.
DOI: https://doi.org/10.1109/TVT.2016.2585575
Google Scholar
[19] Latif T., Dieffenderfer J., Tanneeru A., Lee B., Misra V., Bozkurt A.: Evaluation of Environmental Enclosures for Effective Ambient Ozone Sensing in Wrist-worn Health and Exposure Trackers. IEEE Sensors. Australia, Sydney, 2021 [https://doi.org/10.1109/SENSORS47087.2021.9639530].
DOI: https://doi.org/10.1109/SENSORS47087.2021.9639530
Google Scholar
[20] Lunin V. V., Popovich M. P., Tkachenko S. N.: Physical chemistry of ozone. Max Press, Moscow, 2019.
Google Scholar
[21] Lunin V. V., Samoilovich V. G., Tkachenko S. N., Tkachenko I. S.: Theory and practice of obtaining and applying ozone. Moscow University Press, Moscow 2016.
Google Scholar
[22] Luqueta G. R., Santos E. D., Pessoa R. S., Maciel H. S.: Wireless Sensor Network to Monitoring an Ozone Sterilizer. IEEE Latin America Transactions 14(5), 2016, 2167–2174 [https://doi.org/10.1109/TLA.2016.7530410].
DOI: https://doi.org/10.1109/TLA.2016.7530410
Google Scholar
[23] Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of populated areas. Hygienic standards 2.1.6.1338-03. Ministry of Health of Russia, Moscow 2003
Google Scholar
[https://files.stroyinf.ru/Data2/1/4294814/4294814669.pdf].
Google Scholar
[24] Mischo M., Bitterling M., Himmerlich M., Krischok S., Ambacher O., Cimalla V.: Seebeck ozone sensors. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), 2013 [https://doi.org/10.1109/Transducers.2013.6627100].
DOI: https://doi.org/10.1109/Transducers.2013.6627100
Google Scholar
[25] Mukhopadhyay S., Sahu S. K.: A Bayesian spatiotemporal model to estimate long-term exposure to outdoor air pollution at coarser administrative geographies in England and Wales. Journal of the Royal Statistical Society Series A: Statistics in Society 181(2), 2018, 465–486 [https://doi.org/10.1111/rssa.12299].
DOI: https://doi.org/10.1111/rssa.12299
Google Scholar
[26] Nawahda A.: An assessment of adding value of traffic information and other attributes as part of its classifiers in a data mining tool set for predicting surface ozone levels. Process Safety and Environmental Protection 99, 2016, 149–158.
DOI: https://doi.org/10.1016/j.psep.2015.11.004
Google Scholar
[27] Okafor N. U., Delaney D. T.: Application of Machine Learning Techniques for the Calibration of Low-cost IoT Sensors in Environmental Monitoring Networks. IEEE 6th World Forum on Internet of Things (WF-IoT). USA, New Orleans, LA, 2020 [https://doi.org/10.1109/WF-IoT48130.2020.9221246].
DOI: https://doi.org/10.1109/WF-IoT48130.2020.9221246
Google Scholar
[28] O'Keeffe S., Fitzpatrick C., Lewis E.: Ozone Measurement Using Optical Fibre Sensors in the Visible Region. IEEE SENSORS, Irvine, CA, USA, 2005, [https://doi.org/10.1109/ICSENS.2005.1597810].
DOI: https://doi.org/10.1109/ICSENS.2005.1597810
Google Scholar
[29] Pan C., Yan B., Flynn L., Beck T., Jin X., Buckner S.: Ozone Mapper Profiler Suite Nadir Profiler Degradation. IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022). Malaysia, Kuala Lumpur, 2022, 7348–7350 [https://doi.org/10.1109/IGARSS46834.2022.9883681].
DOI: https://doi.org/10.1109/IGARSS46834.2022.9883681
Google Scholar
[30] Parameswaran K. R., Sonnenfroh D. M.: Compact ozone photometer based on UV LEDs. 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 2010, 375–376 [https://doi.org/10.1109/PHOTONICS.2010.5698916].
DOI: https://doi.org/10.1109/PHOTONICS.2010.5698916
Google Scholar
[31] Petani L., Wickersheim D., Koker L., Reischl M., Gengenbach U., Pylatiuk C.: Experimental Setup for Evaluation of Medical Ozone Gas Sensors. IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 2022 [https://doi.org/10.1109/SAS54819.2022.9881340].
DOI: https://doi.org/10.1109/SAS54819.2022.9881340
Google Scholar
[32] Pichugin Yu. P.: Evaluation of geometric and temperature parameters of micro-discharges in a barrier discharge. Bulletin of the Chuvash University 3, 2011, 102–107.
Google Scholar
[33] Rahmat S. et al.: The Correlation Among Ozone Gases, Hissing Frequency, and Ultraviolet Light in Corona Effects. 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). Indonesia, Yogyakarta, 2022, 74–78 [https://doi.org/10.1109/ICE3IS56585.2022.10010024].
DOI: https://doi.org/10.1109/ICE3IS56585.2022.10010024
Google Scholar
[34] Raiser Yu. P.: Physics of a gas discharge. Scientific publication. Publishing House "Intellect", Dolgoprudny 2009.
Google Scholar
[35] Ravì D., Wong C., Deligianni F., Berthelot M., Andreu-Perez J., Lo B., Yang G.-Z.: Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics 21(1), 2017, 4–21.
DOI: https://doi.org/10.1109/JBHI.2016.2636665
Google Scholar
[36] Rissanen M. P. et al.: The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. Journal of the American Chemical Society 136(44), 2014, 15596–15606.
DOI: https://doi.org/10.1021/ja507146s
Google Scholar
[37] Shaban K. B., Kadri A., Rezk E.: Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal 16(8), 2016, 2598–2606.
DOI: https://doi.org/10.1109/JSEN.2016.2514378
Google Scholar
[38] Shaddick G., Wakefield J.: Modelling daily multivariate pollutant data at multiple sites. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51(3), 2002, 351–372.
DOI: https://doi.org/10.1111/1467-9876.00273
Google Scholar
[39] Sung T.-L.: Direct Measurement of Metal Surface Temperature During Catalytic Dissociation of Ozone for Sensor Application. IEEE Transactions on Plasma Science 42(12), 2014, 3842–3846 [https://doi.org/10.1109/TPS.2014.2350000].
DOI: https://doi.org/10.1109/TPS.2014.2350000
Google Scholar
[40] Suryono S., Khuriati A.: Mobile Measurement System of Ozone Concentration in Urban Areas. Third International Conference on Informatics and Computing (ICIC), Palembang, Indonesia, 2018 [https://doi.org/10.1109/IAC.2018.8780449].
DOI: https://doi.org/10.1109/IAC.2018.8780449
Google Scholar
[41] Wang J., Zhang X., Gao Q., Yue H., Wang H.: Device-free wireless localization and activity recognition: A deep learning approach. IEEE Transactions on Vehicular Technology 66(7), 2017, 6258–6267.
DOI: https://doi.org/10.1109/TVT.2016.2635161
Google Scholar
[42] Wang Z. et al.: Ozone senosr using ZnO based film bulk acoustic resonator. 16th International Solid-State Sensors, Actuators and Microsystems Conference, China, Beijing, 2011, 1124–1127 [https://doi.org/10.1109/TRANSDUCERS.2011.5969275].
DOI: https://doi.org/10.1109/TRANSDUCERS.2011.5969275
Google Scholar
[43] Wen H., Xiao Z., Markham A., Trigoni N.: Accuracy estimation for sensor systems. IEEE Transactions on Mobile Computing 14(7), 2015, 1330–1343.
DOI: https://doi.org/10.1109/TMC.2014.2352262
Google Scholar
Authors
Sunggat MarxulySungat50@gmail.com
Kazakh National Research Technical University named after K. Satbayev Kazakhstan
https://orcid.org/0000-0002-7330-5927
Authors
Askar AbdykadyrovKazakh National Research Technical University named K. Satbayev Kazakhstan
https://orcid.org/0000-0003-1143-4675
Authors
Katipa ChezhimbayevaAlmaty University of Power Engineering and Telecommunications named after G.Daukeev Kazakhstan
Authors
Nurzhigit SmailovKazakh National Research Technical University named after K. Satbayev Kazakhstan
Statistics
Abstract views: 85PDF downloads: 76
Most read articles by the same author(s)
- Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova, STREAMLINING DIGITAL CORRELATION-INTERFEROMETRIC DIRECTION FINDING WITH SPATIAL ANALYTICAL SIGNAL , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 3 (2024)