BADANIA PROCESU KONTROLI OZONU Z WYKORZYSTANIEM CZUJNIKÓW ELEKTRONICZNYCH
Sunggat Marxuly
Sungat50@gmail.comKazakh National Research Technical University named after K. Satbayev (Kazachstan)
https://orcid.org/0000-0002-7330-5927
Askar Abdykadyrov
Kazakh National Research Technical University named K. Satbayev (Kazachstan)
https://orcid.org/0000-0003-1143-4675
Katipa Chezhimbayeva
Almaty University of Power Engineering and Telecommunications named after G.Daukeev (Kazachstan)
Nurzhigit Smailov
Kazakh National Research Technical University named after K. Satbayev (Kazachstan)
Abstrakt
W pracy rozważono problem badania procesu kontroli ozonu za pomocą elektronicznych czujników. W badaniach zastosowano specjalne czujniki, które są rozmieszczone wokół elektrod koronowych w ozonatorze, aby monitorować stężenie ozonu w pomieszczeniu. Jest to istotne, ponieważ wiadomo, że ozon negatywnie wpływa na zdrowie człowieka, jeśli jego maksymalne stężenie w powietrzu przekracza 0,16 mg/m³. W specjalistycznym laboratorium opracowano niewielki system ozonatorów oraz przeprowadzono testy teoretyczne i eksperymentalne. W praktyce zebrano uzyskane dane oraz schemat elektryczny ozonatora (na platformie ARDUINO). Do dokładnego określenia stężenia ozonu (O₃) wokół dyszy ozonowej oraz do pomiaru prądu na elektrodach zastosowano czujniki "Prana Air" oraz czujniki prądu.
Słowa kluczowe:
kontrola ozonu, czujniki, systemy sterowania, wyładowania elektryczne, uczenie maszynowe, monitoringBibliografia
[1] Abdykadyrov A. et al.: Purification of surface water by using the corona discharge method. Mining of Mineral Deposits, 18 (1), 2024, 125–137. [https://doi.org/10.33271/mining18.01.125].
Google Scholar
[2] Abdykadyrov A., Kalandarov P., Marxuly S., Zhunussov K., Sharipova G., Sabyrova A., Akylzhan P., Uzak M.: Study of the process of neutralization of microorganisms in drinking water exposed to environmental problems. Water Conservation and Management, 8(3), 2024, 352–361 [https://doi.org/10.26480/wcm.03.2024.352.361].
Google Scholar
[3] Agarwala R., Wang P., Bishop H. L., Dissanayake A., Calhoun B. H.: A 0.6V 785-nW Multimodal Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring. IEEE Journal of Solid-State Circuits 56(4), 2021, 1058–1070 [https://doi.org/10.1109/JSSC.2021.3057229].
Google Scholar
[4] Contaret T., Seguin J.-L., Menini P., Aguir K.: Physical-Based Characterization of Noise Responses in Metal-Oxide Gas Sensors. IEEE Sensors Journal 13(3), 2013, 980–986 [https://doi.org/10.1109/JSEN.2012.2227707].
Google Scholar
[5] Costilla-Reyes O., Scully P., Ozanyan K. B.: Deep neural networks for learning spatio-temporal features from tomography sensors. IEEE Transactions on Industrial Electronics 65(1), 2018, 645–653 [https://doi.org/10.1109/TIE.2017.2716907].
Google Scholar
[6] Dairi A., Harrou F., Senouci M., Sun Y.: Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robotics and Autonomous Systems 100, 2018, 287–301.
Google Scholar
[7] Degner M., Damaschke N., Ewald H., Lewis E.: High resolution LED-spectroscopy for sensor application in harsh environment. IEEE Instrumentation & Measurement Technology Conference Proceedings. USA, Austin, TX, 2010, 1382–1386 [https://doi.org/10.1109/IMTC.2010.5488239].
Google Scholar
[8] Degner M., Damaschke N., Ewald H., O'Keeffe S., Lewis E.: UV LED-based fiber coupled optical sensor for detection of ozone in the ppm and ppb range. IEEE SENSORS, Christchurch, New Zealand, 2009, 95–99 [https://doi.org/10.1109/ICSENS.2009.5398230].
Google Scholar
[9] Doll T., Fuchs A., Eisele I., Faglia G., Groppelli S., Sberveglieri G.: Room temperature ozone sensing with conductivity and work function sensors based on indium oxide. Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97), 1997 [https://doi.org/10.1109/SENSOR.1997.613716].
Google Scholar
[10] Egorov I., Esipov V., Remnev G., Kaikanov M., Lukonin E., Poloskov A.: A high-repetition rate pulsed electron accelerator. IEEE Transactions on Dielectrics and Electrical Insulation 20(4), 2013, 1334–1339 [https://doi.org/10.1109/TDEI.2013.6571453].
Google Scholar
[11] Faleh R., Othman M., Kachouri A., Aguir K.: Recognition of O3 concentration using WO3 gas sensor and principal component analysis. 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2014, 322–327 [https://doi.org/10.1109/ATSIP.2014.6834629].
Google Scholar
[12] Fechete A. C., Wlodarski W. B., Kalantar-zadeh K., Holland A. S., Wisistsora-at A.: Ozone Sensors based on Layered SAW Devices with: InOx/SiNx/36° YX LiTaO3 Structure. TENCON 2005–2005 IEEE Region 10 Conference, Melbourne, 2005, 1–4 [https://doi.org/10.1109/TENCON.2005.301325].
Google Scholar
[13] Ghazaly C., Guillemot M., Castel B., Langlois E., Etienne M., Hebrant M.: Real-Time Optical Ozone Sensor for Occupational Exposure Assessment. 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, 1403–1406 [https://doi.org/10.1109/TRANSDUCERS.2019.8808516].
Google Scholar
[14] Harrou F., Dairi A., Sun Y., Senouci M.: Reliable detection of abnormal ozone measurements using an air quality sensors network. IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 2018 [https://doi.org/10.1109/EE1.2018.8385265].
Google Scholar
[15] Harrou F., Nounou M., Nounou H.: Statistical detection of abnormal ozone levels using principal component analysis. International Journal of Engineering & Technology 12(6), 2012, 54–59.
Google Scholar
[16] Jia Y., Wu J., Du Y.: Traffic speed prediction using deep learning method. IEEE 19th International Conference Intelligent Transportation Systems (ITSC), 2016, 1217–1222.
Google Scholar
[17] Kanokwan R., Chaiwas S., Nantivatana P., Kocharoen P., Thaenkaew S., Tansriwong S.: Efficiency evaluation of ozone gas concentration generation by commercial ozone generator for disinfection in residential buildings. International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022 [https://doi.org/10.1109/iEECON53204.2022.9741631].
Google Scholar
[18] Koesdwiady A., Soua R., Karray F.: Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE Transactions on Vehicular Technology 65(12), 2016, 9508–9517.
Google Scholar
[19] Latif T., Dieffenderfer J., Tanneeru A., Lee B., Misra V., Bozkurt A.: Evaluation of Environmental Enclosures for Effective Ambient Ozone Sensing in Wrist-worn Health and Exposure Trackers. IEEE Sensors. Australia, Sydney, 2021 [https://doi.org/10.1109/SENSORS47087.2021.9639530].
Google Scholar
[20] Lunin V. V., Popovich M. P., Tkachenko S. N.: Physical chemistry of ozone. Max Press, Moscow, 2019.
Google Scholar
[21] Lunin V. V., Samoilovich V. G., Tkachenko S. N., Tkachenko I. S.: Theory and practice of obtaining and applying ozone. Moscow University Press, Moscow 2016.
Google Scholar
[22] Luqueta G. R., Santos E. D., Pessoa R. S., Maciel H. S.: Wireless Sensor Network to Monitoring an Ozone Sterilizer. IEEE Latin America Transactions 14(5), 2016, 2167–2174 [https://doi.org/10.1109/TLA.2016.7530410].
Google Scholar
[23] Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of populated areas. Hygienic standards 2.1.6.1338-03. Ministry of Health of Russia, Moscow 2003
Google Scholar
[https://files.stroyinf.ru/Data2/1/4294814/4294814669.pdf].
Google Scholar
[24] Mischo M., Bitterling M., Himmerlich M., Krischok S., Ambacher O., Cimalla V.: Seebeck ozone sensors. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), 2013 [https://doi.org/10.1109/Transducers.2013.6627100].
Google Scholar
[25] Mukhopadhyay S., Sahu S. K.: A Bayesian spatiotemporal model to estimate long-term exposure to outdoor air pollution at coarser administrative geographies in England and Wales. Journal of the Royal Statistical Society Series A: Statistics in Society 181(2), 2018, 465–486 [https://doi.org/10.1111/rssa.12299].
Google Scholar
[26] Nawahda A.: An assessment of adding value of traffic information and other attributes as part of its classifiers in a data mining tool set for predicting surface ozone levels. Process Safety and Environmental Protection 99, 2016, 149–158.
Google Scholar
[27] Okafor N. U., Delaney D. T.: Application of Machine Learning Techniques for the Calibration of Low-cost IoT Sensors in Environmental Monitoring Networks. IEEE 6th World Forum on Internet of Things (WF-IoT). USA, New Orleans, LA, 2020 [https://doi.org/10.1109/WF-IoT48130.2020.9221246].
Google Scholar
[28] O'Keeffe S., Fitzpatrick C., Lewis E.: Ozone Measurement Using Optical Fibre Sensors in the Visible Region. IEEE SENSORS, Irvine, CA, USA, 2005, [https://doi.org/10.1109/ICSENS.2005.1597810].
Google Scholar
[29] Pan C., Yan B., Flynn L., Beck T., Jin X., Buckner S.: Ozone Mapper Profiler Suite Nadir Profiler Degradation. IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022). Malaysia, Kuala Lumpur, 2022, 7348–7350 [https://doi.org/10.1109/IGARSS46834.2022.9883681].
Google Scholar
[30] Parameswaran K. R., Sonnenfroh D. M.: Compact ozone photometer based on UV LEDs. 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 2010, 375–376 [https://doi.org/10.1109/PHOTONICS.2010.5698916].
Google Scholar
[31] Petani L., Wickersheim D., Koker L., Reischl M., Gengenbach U., Pylatiuk C.: Experimental Setup for Evaluation of Medical Ozone Gas Sensors. IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 2022 [https://doi.org/10.1109/SAS54819.2022.9881340].
Google Scholar
[32] Pichugin Yu. P.: Evaluation of geometric and temperature parameters of micro-discharges in a barrier discharge. Bulletin of the Chuvash University 3, 2011, 102–107.
Google Scholar
[33] Rahmat S. et al.: The Correlation Among Ozone Gases, Hissing Frequency, and Ultraviolet Light in Corona Effects. 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). Indonesia, Yogyakarta, 2022, 74–78 [https://doi.org/10.1109/ICE3IS56585.2022.10010024].
Google Scholar
[34] Raiser Yu. P.: Physics of a gas discharge. Scientific publication. Publishing House "Intellect", Dolgoprudny 2009.
Google Scholar
[35] Ravì D., Wong C., Deligianni F., Berthelot M., Andreu-Perez J., Lo B., Yang G.-Z.: Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics 21(1), 2017, 4–21.
Google Scholar
[36] Rissanen M. P. et al.: The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. Journal of the American Chemical Society 136(44), 2014, 15596–15606.
Google Scholar
[37] Shaban K. B., Kadri A., Rezk E.: Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal 16(8), 2016, 2598–2606.
Google Scholar
[38] Shaddick G., Wakefield J.: Modelling daily multivariate pollutant data at multiple sites. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51(3), 2002, 351–372.
Google Scholar
[39] Sung T.-L.: Direct Measurement of Metal Surface Temperature During Catalytic Dissociation of Ozone for Sensor Application. IEEE Transactions on Plasma Science 42(12), 2014, 3842–3846 [https://doi.org/10.1109/TPS.2014.2350000].
Google Scholar
[40] Suryono S., Khuriati A.: Mobile Measurement System of Ozone Concentration in Urban Areas. Third International Conference on Informatics and Computing (ICIC), Palembang, Indonesia, 2018 [https://doi.org/10.1109/IAC.2018.8780449].
Google Scholar
[41] Wang J., Zhang X., Gao Q., Yue H., Wang H.: Device-free wireless localization and activity recognition: A deep learning approach. IEEE Transactions on Vehicular Technology 66(7), 2017, 6258–6267.
Google Scholar
[42] Wang Z. et al.: Ozone senosr using ZnO based film bulk acoustic resonator. 16th International Solid-State Sensors, Actuators and Microsystems Conference, China, Beijing, 2011, 1124–1127 [https://doi.org/10.1109/TRANSDUCERS.2011.5969275].
Google Scholar
[43] Wen H., Xiao Z., Markham A., Trigoni N.: Accuracy estimation for sensor systems. IEEE Transactions on Mobile Computing 14(7), 2015, 1330–1343.
Google Scholar
Autorzy
Sunggat MarxulySungat50@gmail.com
Kazakh National Research Technical University named after K. Satbayev Kazachstan
https://orcid.org/0000-0002-7330-5927
Autorzy
Askar AbdykadyrovKazakh National Research Technical University named K. Satbayev Kazachstan
https://orcid.org/0000-0003-1143-4675
Autorzy
Katipa ChezhimbayevaAlmaty University of Power Engineering and Telecommunications named after G.Daukeev Kazachstan
Autorzy
Nurzhigit SmailovKazakh National Research Technical University named after K. Satbayev Kazachstan
Statystyki
Abstract views: 7PDF downloads: 5
Inne teksty tego samego autora
- Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova, USPRAWNIENIE CYFROWEGO KORELACYJNO-INTERFEROMETRYCZNEGO USTALANIA KIERUNKU ZA POMOCĄ PRZESTRZENNEGO SYGNAŁU ANALITYCZNEGO , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 14 Nr 3 (2024)