BADANIA PROCESU KONTROLI OZONU Z WYKORZYSTANIEM CZUJNIKÓW ELEKTRONICZNYCH

Sunggat Marxuly

Sungat50@gmail.com
Kazakh National Research Technical University named after K. Satbayev (Kazachstan)
https://orcid.org/0000-0002-7330-5927

Askar Abdykadyrov


Kazakh National Research Technical University named K. Satbayev (Kazachstan)
https://orcid.org/0000-0003-1143-4675

Katipa Chezhimbayeva


Almaty University of Power Engineering and Telecommunications named after G.Daukeev (Kazachstan)

Nurzhigit Smailov


Kazakh National Research Technical University named after K. Satbayev (Kazachstan)

Abstrakt

W pracy rozważono problem badania procesu kontroli ozonu za pomocą elektronicznych czujników. W badaniach zastosowano specjalne czujniki, które są rozmieszczone wokół elektrod koronowych w ozonatorze, aby monitorować stężenie ozonu w pomieszczeniu. Jest to istotne, ponieważ wiadomo, że ozon negatywnie wpływa na zdrowie człowieka, jeśli jego maksymalne stężenie w powietrzu przekracza 0,16 mg/m³. W specjalistycznym laboratorium opracowano niewielki system ozonatorów oraz przeprowadzono testy teoretyczne i eksperymentalne. W praktyce zebrano uzyskane dane oraz schemat elektryczny ozonatora (na platformie ARDUINO). Do dokładnego określenia stężenia ozonu (O₃) wokół dyszy ozonowej oraz do pomiaru prądu na elektrodach zastosowano czujniki "Prana Air" oraz czujniki prądu.


Słowa kluczowe:

kontrola ozonu, czujniki, systemy sterowania, wyładowania elektryczne, uczenie maszynowe, monitoring

[1] Abdykadyrov A. et al.: Purification of surface water by using the corona discharge method. Mining of Mineral Deposits, 18 (1), 2024, 125–137. [https://doi.org/10.33271/mining18.01.125].
  Google Scholar

[2] Abdykadyrov A., Kalandarov P., Marxuly S., Zhunussov K., Sharipova G., Sabyrova A., Akylzhan P., Uzak M.: Study of the process of neutralization of microorganisms in drinking water exposed to environmental problems. Water Conservation and Management, 8(3), 2024, 352–361 [https://doi.org/10.26480/wcm.03.2024.352.361].
  Google Scholar

[3] Agarwala R., Wang P., Bishop H. L., Dissanayake A., Calhoun B. H.: A 0.6V 785-nW Multimodal Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring. IEEE Journal of Solid-State Circuits 56(4), 2021, 1058–1070 [https://doi.org/10.1109/JSSC.2021.3057229].
  Google Scholar

[4] Contaret T., Seguin J.-L., Menini P., Aguir K.: Physical-Based Characterization of Noise Responses in Metal-Oxide Gas Sensors. IEEE Sensors Journal 13(3), 2013, 980–986 [https://doi.org/10.1109/JSEN.2012.2227707].
  Google Scholar

[5] Costilla-Reyes O., Scully P., Ozanyan K. B.: Deep neural networks for learning spatio-temporal features from tomography sensors. IEEE Transactions on Industrial Electronics 65(1), 2018, 645–653 [https://doi.org/10.1109/TIE.2017.2716907].
  Google Scholar

[6] Dairi A., Harrou F., Senouci M., Sun Y.: Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robotics and Autonomous Systems 100, 2018, 287–301.
  Google Scholar

[7] Degner M., Damaschke N., Ewald H., Lewis E.: High resolution LED-spectroscopy for sensor application in harsh environment. IEEE Instrumentation & Measurement Technology Conference Proceedings. USA, Austin, TX, 2010, 1382–1386 [https://doi.org/10.1109/IMTC.2010.5488239].
  Google Scholar

[8] Degner M., Damaschke N., Ewald H., O'Keeffe S., Lewis E.: UV LED-based fiber coupled optical sensor for detection of ozone in the ppm and ppb range. IEEE SENSORS, Christchurch, New Zealand, 2009, 95–99 [https://doi.org/10.1109/ICSENS.2009.5398230].
  Google Scholar

[9] Doll T., Fuchs A., Eisele I., Faglia G., Groppelli S., Sberveglieri G.: Room temperature ozone sensing with conductivity and work function sensors based on indium oxide. Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97), 1997 [https://doi.org/10.1109/SENSOR.1997.613716].
  Google Scholar

[10] Egorov I., Esipov V., Remnev G., Kaikanov M., Lukonin E., Poloskov A.: A high-repetition rate pulsed electron accelerator. IEEE Transactions on Dielectrics and Electrical Insulation 20(4), 2013, 1334–1339 [https://doi.org/10.1109/TDEI.2013.6571453].
  Google Scholar

[11] Faleh R., Othman M., Kachouri A., Aguir K.: Recognition of O3 concentration using WO3 gas sensor and principal component analysis. 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2014, 322–327 [https://doi.org/10.1109/ATSIP.2014.6834629].
  Google Scholar

[12] Fechete A. C., Wlodarski W. B., Kalantar-zadeh K., Holland A. S., Wisistsora-at A.: Ozone Sensors based on Layered SAW Devices with: InOx/SiNx/36° YX LiTaO3 Structure. TENCON 2005–2005 IEEE Region 10 Conference, Melbourne, 2005, 1–4 [https://doi.org/10.1109/TENCON.2005.301325].
  Google Scholar

[13] Ghazaly C., Guillemot M., Castel B., Langlois E., Etienne M., Hebrant M.: Real-Time Optical Ozone Sensor for Occupational Exposure Assessment. 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, 1403–1406 [https://doi.org/10.1109/TRANSDUCERS.2019.8808516].
  Google Scholar

[14] Harrou F., Dairi A., Sun Y., Senouci M.: Reliable detection of abnormal ozone measurements using an air quality sensors network. IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 2018 [https://doi.org/10.1109/EE1.2018.8385265].
  Google Scholar

[15] Harrou F., Nounou M., Nounou H.: Statistical detection of abnormal ozone levels using principal component analysis. International Journal of Engineering & Technology 12(6), 2012, 54–59.
  Google Scholar

[16] Jia Y., Wu J., Du Y.: Traffic speed prediction using deep learning method. IEEE 19th International Conference Intelligent Transportation Systems (ITSC), 2016, 1217–1222.
  Google Scholar

[17] Kanokwan R., Chaiwas S., Nantivatana P., Kocharoen P., Thaenkaew S., Tansriwong S.: Efficiency evaluation of ozone gas concentration generation by commercial ozone generator for disinfection in residential buildings. International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022 [https://doi.org/10.1109/iEECON53204.2022.9741631].
  Google Scholar

[18] Koesdwiady A., Soua R., Karray F.: Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE Transactions on Vehicular Technology 65(12), 2016, 9508–9517.
  Google Scholar

[19] Latif T., Dieffenderfer J., Tanneeru A., Lee B., Misra V., Bozkurt A.: Evaluation of Environmental Enclosures for Effective Ambient Ozone Sensing in Wrist-worn Health and Exposure Trackers. IEEE Sensors. Australia, Sydney, 2021 [https://doi.org/10.1109/SENSORS47087.2021.9639530].
  Google Scholar

[20] Lunin V. V., Popovich M. P., Tkachenko S. N.: Physical chemistry of ozone. Max Press, Moscow, 2019.
  Google Scholar

[21] Lunin V. V., Samoilovich V. G., Tkachenko S. N., Tkachenko I. S.: Theory and practice of obtaining and applying ozone. Moscow University Press, Moscow 2016.
  Google Scholar

[22] Luqueta G. R., Santos E. D., Pessoa R. S., Maciel H. S.: Wireless Sensor Network to Monitoring an Ozone Sterilizer. IEEE Latin America Transactions 14(5), 2016, 2167–2174 [https://doi.org/10.1109/TLA.2016.7530410].
  Google Scholar

[23] Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of populated areas. Hygienic standards 2.1.6.1338-03. Ministry of Health of Russia, Moscow 2003
  Google Scholar

[https://files.stroyinf.ru/Data2/1/4294814/4294814669.pdf].
  Google Scholar

[24] Mischo M., Bitterling M., Himmerlich M., Krischok S., Ambacher O., Cimalla V.: Seebeck ozone sensors. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), 2013 [https://doi.org/10.1109/Transducers.2013.6627100].
  Google Scholar

[25] Mukhopadhyay S., Sahu S. K.: A Bayesian spatiotemporal model to estimate long-term exposure to outdoor air pollution at coarser administrative geographies in England and Wales. Journal of the Royal Statistical Society Series A: Statistics in Society 181(2), 2018, 465–486 [https://doi.org/10.1111/rssa.12299].
  Google Scholar

[26] Nawahda A.: An assessment of adding value of traffic information and other attributes as part of its classifiers in a data mining tool set for predicting surface ozone levels. Process Safety and Environmental Protection 99, 2016, 149–158.
  Google Scholar

[27] Okafor N. U., Delaney D. T.: Application of Machine Learning Techniques for the Calibration of Low-cost IoT Sensors in Environmental Monitoring Networks. IEEE 6th World Forum on Internet of Things (WF-IoT). USA, New Orleans, LA, 2020 [https://doi.org/10.1109/WF-IoT48130.2020.9221246].
  Google Scholar

[28] O'Keeffe S., Fitzpatrick C., Lewis E.: Ozone Measurement Using Optical Fibre Sensors in the Visible Region. IEEE SENSORS, Irvine, CA, USA, 2005, [https://doi.org/10.1109/ICSENS.2005.1597810].
  Google Scholar

[29] Pan C., Yan B., Flynn L., Beck T., Jin X., Buckner S.: Ozone Mapper Profiler Suite Nadir Profiler Degradation. IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022). Malaysia, Kuala Lumpur, 2022, 7348–7350 [https://doi.org/10.1109/IGARSS46834.2022.9883681].
  Google Scholar

[30] Parameswaran K. R., Sonnenfroh D. M.: Compact ozone photometer based on UV LEDs. 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 2010, 375–376 [https://doi.org/10.1109/PHOTONICS.2010.5698916].
  Google Scholar

[31] Petani L., Wickersheim D., Koker L., Reischl M., Gengenbach U., Pylatiuk C.: Experimental Setup for Evaluation of Medical Ozone Gas Sensors. IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 2022 [https://doi.org/10.1109/SAS54819.2022.9881340].
  Google Scholar

[32] Pichugin Yu. P.: Evaluation of geometric and temperature parameters of micro-discharges in a barrier discharge. Bulletin of the Chuvash University 3, 2011, 102–107.
  Google Scholar

[33] Rahmat S. et al.: The Correlation Among Ozone Gases, Hissing Frequency, and Ultraviolet Light in Corona Effects. 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). Indonesia, Yogyakarta, 2022, 74–78 [https://doi.org/10.1109/ICE3IS56585.2022.10010024].
  Google Scholar

[34] Raiser Yu. P.: Physics of a gas discharge. Scientific publication. Publishing House "Intellect", Dolgoprudny 2009.
  Google Scholar

[35] Ravì D., Wong C., Deligianni F., Berthelot M., Andreu-Perez J., Lo B., Yang G.-Z.: Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics 21(1), 2017, 4–21.
  Google Scholar

[36] Rissanen M. P. et al.: The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. Journal of the American Chemical Society 136(44), 2014, 15596–15606.
  Google Scholar

[37] Shaban K. B., Kadri A., Rezk E.: Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal 16(8), 2016, 2598–2606.
  Google Scholar

[38] Shaddick G., Wakefield J.: Modelling daily multivariate pollutant data at multiple sites. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51(3), 2002, 351–372.
  Google Scholar

[39] Sung T.-L.: Direct Measurement of Metal Surface Temperature During Catalytic Dissociation of Ozone for Sensor Application. IEEE Transactions on Plasma Science 42(12), 2014, 3842–3846 [https://doi.org/10.1109/TPS.2014.2350000].
  Google Scholar

[40] Suryono S., Khuriati A.: Mobile Measurement System of Ozone Concentration in Urban Areas. Third International Conference on Informatics and Computing (ICIC), Palembang, Indonesia, 2018 [https://doi.org/10.1109/IAC.2018.8780449].
  Google Scholar

[41] Wang J., Zhang X., Gao Q., Yue H., Wang H.: Device-free wireless localization and activity recognition: A deep learning approach. IEEE Transactions on Vehicular Technology 66(7), 2017, 6258–6267.
  Google Scholar

[42] Wang Z. et al.: Ozone senosr using ZnO based film bulk acoustic resonator. 16th International Solid-State Sensors, Actuators and Microsystems Conference, China, Beijing, 2011, 1124–1127 [https://doi.org/10.1109/TRANSDUCERS.2011.5969275].
  Google Scholar

[43] Wen H., Xiao Z., Markham A., Trigoni N.: Accuracy estimation for sensor systems. IEEE Transactions on Mobile Computing 14(7), 2015, 1330–1343.
  Google Scholar


Opublikowane
2024-12-21

Cited By / Share

Marxuly, S., Abdykadyrov, A., Chezhimbayeva, K., & Smailov, N. (2024). BADANIA PROCESU KONTROLI OZONU Z WYKORZYSTANIEM CZUJNIKÓW ELEKTRONICZNYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(4), 38–45. https://doi.org/10.35784/iapgos.6051

Autorzy

Sunggat Marxuly 
Sungat50@gmail.com
Kazakh National Research Technical University named after K. Satbayev Kazachstan
https://orcid.org/0000-0002-7330-5927

Autorzy

Askar Abdykadyrov 

Kazakh National Research Technical University named K. Satbayev Kazachstan
https://orcid.org/0000-0003-1143-4675

Autorzy

Katipa Chezhimbayeva 

Almaty University of Power Engineering and Telecommunications named after G.Daukeev Kazachstan

Autorzy

Nurzhigit Smailov 

Kazakh National Research Technical University named after K. Satbayev Kazachstan

Statystyki

Abstract views: 7
PDF downloads: 5


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.


Inne teksty tego samego autora