IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2024)
-
HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva5-10
-
MEANS OF ANALYZING PARAMETERS OF SPEECH SIGNAL TRANSMISSION AND REPRODUCTION
Olexiy Azarov, Larysa Azarova, Iurii Krak, Leonid Krupelnitskyi, Anzhelika Azarova, Veronika Azarova11-16
-
CONCEPT AND VALIDATION OF A SYSTEM FOR RECORDING VIBROACOUSTIC SIGNALS OF THE KNEE JOINT
Robert Karpiński, Anna Machrowska, Marcin Maciejewski, Józef Jonak, Przemysław Krakowski17-21
-
A COYOTE-INSPIRED APPROACH FOR SYSTEMIC LUPUS ERYTHEMATOSUS PREDICTION USING NEURAL NETWORKS
Sobhana Mummaneni, Pragathi Dodda, Naga Deepika Ginjupalli22-27
-
CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE
Vasyl Hudym, Vira Kosovska, Huthaifa Al_Issa, Taras Shchur, Oleksandr Miroshnyk, Sławomir Ziarkowski28-33
-
STUDY OF STARTING MODES OF SINGLE-PHASE INDUCTION MOTORS WHEN CHANGING THE PARAMETERS OF THE STATOR WINDINGS, PHASE-SHIFTING CAPACITOR AND SUPPLY VOLTAGE
Suad Omar Aldaikh, Mohannad O. Rawashdeh, Lina H. Hussienat, Mohamed Qawaqzeh, Oleksiy Iegorov, Olga Iegorova, Mykola Kundenko, Dmytro Danylchenko, Oleksandr Miroshnyk, Taras Shchur34-41
-
EVALUATION OF THE ENERGY CHARACTERISTICS OF THE INFRARED DRYING PROCESS OF RAPESEED AND SOYBEANS WITH A VIBRATING WAVE DRIVER
Igor Palamarchuk, Vladyslav Palamarchuk, Marija Zheplinska42-46
-
JUSTIFICATION OF THE POSSIBILITY OF BUILDING AN INTEGRATED ULTRASONIC MEASURING TRANSDUCER OF NATURAL GAS CONSUMPTION
Yosyp Bilynsky, Аndrii Stetsenko, Konstantin Ogorodnik47-50
-
NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION
Piotr Kisała, Paweł Wiśniewski51-55
-
A MODIFIED METHOD OF SPECTRAL ANALYSIS OF RADIO SIGNALS USING THE OPERATOR APPROACH FOR THE FOURIER TRANSFORM
Valentyn Sobchuk, Serhii Laptiev, Tetiana Laptievа, Oleg Barabash, Oleksandr Drobyk, Andrii Sobchuk56-61
-
ITERATIVE DECODING OF SHORT LOW-DENSITY PARITY-CHECK CODES BASED ON DIFFERENTIAL EVOLUTION
Mykola Shtompel, Sergii Prykhodko62-65
-
A REVIEW OF GENERATIVE ADVERSARIAL NETWORKS FOR SECURITY APPLICATIONS
Swarajya Madhuri Rayavarapu, Shanmukha Prasanthi Tammineni, Sasibhushana Rao Gottapu, Aruna Singam66-70
-
IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE
Maroua Guissi, My Hachem El Yousfi Alaoui, Larbi Belarbi, Asma Chaik71-76
-
APPLICATION OF RESNET-152 NEURAL NETWORKS TO ANALYZE IMAGES FROM UAV FOR FIRE DETECTION
Nataliia Stelmakh, Svitlana Mandrovska, Roman Galagan77-82
-
IDENTIFICATION OF SALT-AFFECTED SOILS IN THE COASTAL AREA OF KRISHNA DISTRICT, ANDHRA PRADESH, USING REMOTE SENSING DATA AND MACHINE LEARNING TECHNIQUES
Govada Anuradha, Venkata Sai Sankara Vineeth Chivukula, Naga Ganesh Kothangundla83-88
-
PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE
Muna AL-Shamdeen, Fawziya Mahmood Ramo89-95
-
EVALUATION OF ENGINEERING SOLUTIONS IN THE DEVELOPMENT OF THE PROCUREMENT SECTION FOR THE METAL CONSTRUCTION WORKSHOP
Bogdan Palchevskyi, Lubov Krestyanpol96-100
-
EVALUATING THE PERFORMANCE OF BITCOIN PRICE FORECASTING USING MACHINE LEARNING TECHNIQUES ON HISTORICAL DATA
Mamun Ahmed, Sayma Alam Suha, Fahamida Hossain Mahi, Forhad Uddin Ahmed101-108
-
METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS
Volodymyr Lyfar, Olena Lyfar, Volodymyr Zynchenko109-112
-
IMPROVING PARAMETERS OF V-SUPPORT VECTOR REGRESSION WITH FEATURE SELECTION IN PARALLEL BY USING QUASI-OPPOSITIONAL AND HARRIS HAWKS OPTIMIZATION ALGORITHM
Omar Mohammed Ismael, Omar Saber Qasim, Zakariya Yahya Algamal113-118
-
AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong119-126
-
MODELING THE CHOICE OF AN ONLINE COURSE FOR INFORMATION HYGIENE SKILLS USING THE SAATY METHOD
Yuliia Rudenko, Karen Ahadzhanov-Honsales, Svitlana Ahadzhanova, Alla Batalova, Olena Bieliaieva, Artem Yurchenko, Olena Semenikhina127-132
-
REVIEW OF THE ACHIEVEMENTS OF EMPLOYEES OF THE LUBLIN UNIVERSITY OF TECHNOLOGY IN THE FIELD OF FUZZY SET UTILIZATION
Maciej Celiński, Adam Kiersztyn133-140
-
MODELING ROBOTECHNICAL MECHATRONIC COMPLEXES IN V-REP PROGRAM
Laura Yesmakhanova141-148
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Predictive maintenance (PdM) allows the prediction of early failures of medical equipment before they occur. It helps to diagnose the defaults of critical equipment in a hospital structure, namely MRI. Founded on the analysis of data collected in real time of the right parameters, thanks to intelligent sensors positioned on the equipment, using Internet of Things (IoT) technology and the practice of machine learning tools. The objective of this techniques is the implementation of algorithms capable to predict an anomaly, which will make equipment and maintenance tools increasingly autonomous and intelligent. Therefore, the idea of this project is to develop a wireless sensor network to ensure continuous monitoring of the state of MRI. The implemented solution includes an IoT monitoring system of the cold head’s cooling circuit. Based on the vibrations at the pump, it allows to monitor the motor circuit, inform the staff at each abnormal state of this system, and protect this device against any future anomalies. Thanks to the CNN algorithm implemented in this solution, the results are very satisfactory, with an accuracy >98%. This solution can be integrated into a general predictive maintenance solution for the most sensitive equipment in a hospital.
Keywords:
References
Beyer J., Krug J., Friebe M.: Monitoring the cold head of Magnetic Resonance Imaging systems by means of vibration analysis. Journal of Sensor Technology 7(3), 2017, 39-51. DOI: https://doi.org/10.4236/jst.2017.73003
Compare M., Baraldi P., Zio E.: Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet of Things Journal 7(5), 2019, 4585-4597. DOI: https://doi.org/10.1109/JIOT.2019.2957029
Hashemian H. M.: State-of-the-art predictive maintenance techniques. IEEE Transactions on Instrumentation and measurement 60(1), 2010, 226-236. DOI: https://doi.org/10.1109/TIM.2010.2047662
Hidalgo‐Tobon S. S.: Theory of gradient coil design methods for magnetic resonance imaging. Concepts in Magnetic Resonance Part A 36(4), 2010, 223-242. DOI: https://doi.org/10.1002/cmr.a.20163
Jbili A., Lahlimi M.: A Moroccan Leading Use Case for Predictive Maintenance, IoT and Industry 4.0. 2019. DOI: https://doi.org/10.2139/ssrn.3638898
Kwon D. et al.: IoT-based prognostics and systems health management for industrial applications. IEEE Access 4, 2016, 3659-3670. DOI: https://doi.org/10.1109/ACCESS.2016.2587754
Lauzon F. Q.: An introduction to deep learning. 11th International Conference on Information Science, Signal Processing and their Applications – ISSPA, IEEE, 2012. DOI: https://doi.org/10.1109/ISSPA.2012.6310529
Massaro A. et al. Sensing and quality monitoring facilities designed for pasta industry including traceability, image vision and predictive maintenance. II Workshop on Metrology for Industry 4.0 and IoT – MetroInd4.0&IoT, IEEE, 2019, 68-72. DOI: https://doi.org/10.1109/METROI4.2019.8792912
Megalal R., Eswaramoorthy V.: Fault Detection and Prediction of Failure Using Vibration Analysis. International Research Journal for Engineering and Technology – IRJET 5.6, 2018, 748-758.
Narayanan S. et al.: An approach to real-time magnetic resonance imaging for speech production. The Journal of the Acoustical Society of America 115(4), 2004, 1771-1776. DOI: https://doi.org/10.1121/1.1652588
Neupane D., Seok J.: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review. IEEE Access 8, 2020, 93155-93178. DOI: https://doi.org/10.1109/ACCESS.2020.2990528
Niyonambaza I., Zennaro M., Uwitonze A.: Predictive Maintenance (PdM) Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals in Rwanda. Future Internet 12(12), 2020, 224. DOI: https://doi.org/10.3390/fi12120224
Renwick J. T. Babson P. E.: Vibration analysis - a proven technique as a predictive maintenance tool. IEEE Transactions on Industry Applications 2, 1985, 324-332. DOI: https://doi.org/10.1109/TIA.1985.349652
Richardson M., Shawn W.: Getting started with raspberry PI. O'Reilly Media, Inc., 2012.
Scholtz R. A.: The Spread Spectrum Concept. Abramson N. (Ed.): Multiple Access. Piscataway, IEEE Press, NJ 1993, ch. 3, 121-123.
Selcuk S.: Predictive maintenance, its implementation and latest trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231(9), 2017, 1670-1679. DOI: https://doi.org/10.1177/0954405415601640
Selvaraj S., Sundaravaradhan S.: Challenges and opportunities in IoT healthcare systems: a systematic review. SN Applied Sciences 2(1), 2020, 1-8. DOI: https://doi.org/10.1007/s42452-019-1925-y
Sezdi M.: Two different maintenance strategies in the hospital environment: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. Journal of healthcare engineering, 2016. DOI: https://doi.org/10.1155/2016/7267983
Shamayleh A., Awad M., Farhat J.: IoT based predictive maintenance management of medical equipment. Journal of medical systems 44(4), 2020, 1-12. DOI: https://doi.org/10.1007/s10916-020-1534-8
Shetty R. B.: Predictive Maintenance in the IoT Era. Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things, 2018, 589-612. DOI: https://doi.org/10.1002/9781119515326.ch21
Zaaboul R. et al.: Vibration monitoring of the MRI Scanner’s cold head. International Conference on Electrical and Information Technologies – ICEIT. IEEE, 2020. DOI: https://doi.org/10.1109/ICEIT48248.2020.9113192
Article Details
Abstract views: 831

