[1] Abdykadyrov A. et al.: Optimization of Distributed Acoustic Sensors Based on Fiber Optic Technologies. Eastern-European Journal of Enterprise Technologies 5(131), 2024, 50–59 [https://doi.org/10.15587/1729-4061.2024.313455].
DOI: https://doi.org/10.15587/1729-4061.2024.313455
[2] Fu X. et al.: De-Anonymization of Networks with Communities: When Quantifications Meet Algorithms. GLOBECOM 2017 – 2017 IEEE Global Communications Conference, Singapore 2017, 1–6 [https://doi.org/10.1109/glocom.2017.8254107].
DOI: https://doi.org/10.1109/GLOCOM.2017.8254107
[3] Gao T., Li F.: De-Anonymizing Online Social Network with Conditional Generative Adversarial Network. 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), 2022, 496–504 [https://doi.org/10.1109/mass56207.2022.00076].
DOI: https://doi.org/10.1109/MASS56207.2022.00076
[4] Jiang H. et al.: Structure-Attribute-Based Social Network Deanonymization with Spectral Graph Partitioning. IEEE Transactions on Computational Social Systems 9(3), 2021, 902–913 [https://doi.org/10.1109/tcss.2021.3082901].
DOI: https://doi.org/10.1109/TCSS.2021.3082901
[5] Kuttybayeva A. et al.: Investigation of a Fiber Optic Laser Sensor with Grating Resonator Using Mirrors. Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), IEEE, 2024, 709–711 [https://doi.org/10.1109/ElCon61730.2024.10468264].
DOI: https://doi.org/10.1109/ElCon61730.2024.10468264
[6] Lee W.-H. et al.: Blind De-Anonymization Attacks Using Social Networks. arXiv (Cornell University), 2018 [https://doi.org/10.48550/arxiv.1801.05534].
[7] Mao J. et al.: Understanding Structure-Based Social Network De-Anonymization Techniques via Empirical Analysis. EURASIP Journal on Wireless Communications and Networking 1, 2018 [https://doi.org/10.1186/s13638-018-1291-2].
DOI: https://doi.org/10.1186/s13638-018-1291-2
[8] Qian J. et al.: Social Network De-Anonymization and Privacy Inference with Knowledge Graph Model. IEEE Transactions on Dependable and Secure Computing 16(4), 2017, 679–692 [https://doi.org/10.1109/tdsc.2017.2697854].
DOI: https://doi.org/10.1109/TDSC.2017.2697854
[9] Qian J. et al.: Social Network De-Anonymization: More Adversarial Knowledge, More Users Re-Identified? arXiv (Cornell University), 2017 [https://doi.org/10.48550/arxiv.1710.10998].
[10] Rutba-Aman R. T., Rani Ghosh P.: Unveiling the Veiled: Leveraging Deep Learning and Network Analysis for De-Anonymization in Social Networks. J. of Primeasia 4(1), 2023, 1–6 [https://doi.org/10.25163/primeasia.4140042].
DOI: https://doi.org/10.25163/primeasia.4140042
[11] Sabibolda A. et al.: Estimation of the Time Efficiency of a Radio Direction Finder Operating on the Basis of a Searchless Spectral Method of Dispersion-Correlation Radio Direction Finding. Mechanisms and Machine Science 167, 2024, 62–70 [https://doi.org/10.1007/978-3-031-67569-0_8].
DOI: https://doi.org/10.1007/978-3-031-67569-0_8
[12] Shao Y. et al.: Fast De-Anonymization of Social Networks with Structural Information. Data Science and Engineering 4(1), 2019, 76–92 [https://doi.org/10.1007/s41019-019-0086-8].
DOI: https://doi.org/10.1007/s41019-019-0086-8
[13] Smailov N. et al.: Approaches to Evaluating the Quality of Masking Noise Interference. International Journal of Electronics and Telecommunications 67(1), 2020, 59–64 [https://doi.org/10.24425/ijet.2021.135944].
DOI: https://doi.org/10.24425/ijet.2021.135944
[14] Smailov N. et al.: Streamlining Digital Correlation-Interferometric Direction Finding with Spatial Analytical Signal. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(3), 2024, 43–48 [https://doi.org/10.35784/iapgos.6177].
DOI: https://doi.org/10.35784/iapgos.6177
[15] Tereikovskyi I. et al.: Method for Constructing Neural Network Means for Recognizing Scenes of Political Extremism in Graphic Materials of Online Social Networks. International Journal of Computer Network and Information Security 16(3), 2024, 52–69 [https://doi.org/10.5815/ijcnis.2024.03.05].
DOI: https://doi.org/10.5815/ijcnis.2024.03.05