Optimization of machine learning methods for de-anonymization in social networks
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
In recent years, social networks have struggled to meet user protection and fraud prevention requirements under unpredictable risks. Anonymity features are widely used to help individuals maintain their privacy, but they can also be exploited for malicious purposes. In this study, we develop a machine learning-driven de-anonymization system for social networks, with a focus on feature selection, hyperparameter tuning, and dimensionality reduction. Using supervised learning techniques, the system achieves high accuracy in identifying user identities from anonymized datasets. In experiments conducted on real and synthetic data, the optimized models consistently outperform baseline methods on average. Even in cases where they do not, significant improvements in precision are observed. Ethical considerations surrounding de-anonymization are thoroughly discussed, including the responsibility of implementation to maintain a balance between privacy and security. By proposing a scalable and effective framework for analyzing anonymized data in social networks, this research contributes to improved fraud detection and strengthened Internet security.
Keywords:
References
[1] Abdykadyrov A. et al.: Optimization of Distributed Acoustic Sensors Based on Fiber Optic Technologies. Eastern-European Journal of Enterprise Technologies 5(131), 2024, 50–59 [https://doi.org/10.15587/1729-4061.2024.313455]. DOI: https://doi.org/10.15587/1729-4061.2024.313455
[2] Fu X. et al.: De-Anonymization of Networks with Communities: When Quantifications Meet Algorithms. GLOBECOM 2017 – 2017 IEEE Global Communications Conference, Singapore 2017, 1–6 [https://doi.org/10.1109/glocom.2017.8254107]. DOI: https://doi.org/10.1109/GLOCOM.2017.8254107
[3] Gao T., Li F.: De-Anonymizing Online Social Network with Conditional Generative Adversarial Network. 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), 2022, 496–504 [https://doi.org/10.1109/mass56207.2022.00076]. DOI: https://doi.org/10.1109/MASS56207.2022.00076
[4] Jiang H. et al.: Structure-Attribute-Based Social Network Deanonymization with Spectral Graph Partitioning. IEEE Transactions on Computational Social Systems 9(3), 2021, 902–913 [https://doi.org/10.1109/tcss.2021.3082901]. DOI: https://doi.org/10.1109/TCSS.2021.3082901
[5] Kuttybayeva A. et al.: Investigation of a Fiber Optic Laser Sensor with Grating Resonator Using Mirrors. Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), IEEE, 2024, 709–711 [https://doi.org/10.1109/ElCon61730.2024.10468264]. DOI: https://doi.org/10.1109/ElCon61730.2024.10468264
[6] Lee W.-H. et al.: Blind De-Anonymization Attacks Using Social Networks. arXiv (Cornell University), 2018 [https://doi.org/10.48550/arxiv.1801.05534].
[7] Mao J. et al.: Understanding Structure-Based Social Network De-Anonymization Techniques via Empirical Analysis. EURASIP Journal on Wireless Communications and Networking 1, 2018 [https://doi.org/10.1186/s13638-018-1291-2]. DOI: https://doi.org/10.1186/s13638-018-1291-2
[8] Qian J. et al.: Social Network De-Anonymization and Privacy Inference with Knowledge Graph Model. IEEE Transactions on Dependable and Secure Computing 16(4), 2017, 679–692 [https://doi.org/10.1109/tdsc.2017.2697854]. DOI: https://doi.org/10.1109/TDSC.2017.2697854
[9] Qian J. et al.: Social Network De-Anonymization: More Adversarial Knowledge, More Users Re-Identified? arXiv (Cornell University), 2017 [https://doi.org/10.48550/arxiv.1710.10998].
[10] Rutba-Aman R. T., Rani Ghosh P.: Unveiling the Veiled: Leveraging Deep Learning and Network Analysis for De-Anonymization in Social Networks. J. of Primeasia 4(1), 2023, 1–6 [https://doi.org/10.25163/primeasia.4140042]. DOI: https://doi.org/10.25163/primeasia.4140042
[11] Sabibolda A. et al.: Estimation of the Time Efficiency of a Radio Direction Finder Operating on the Basis of a Searchless Spectral Method of Dispersion-Correlation Radio Direction Finding. Mechanisms and Machine Science 167, 2024, 62–70 [https://doi.org/10.1007/978-3-031-67569-0_8]. DOI: https://doi.org/10.1007/978-3-031-67569-0_8
[12] Shao Y. et al.: Fast De-Anonymization of Social Networks with Structural Information. Data Science and Engineering 4(1), 2019, 76–92 [https://doi.org/10.1007/s41019-019-0086-8]. DOI: https://doi.org/10.1007/s41019-019-0086-8
[13] Smailov N. et al.: Approaches to Evaluating the Quality of Masking Noise Interference. International Journal of Electronics and Telecommunications 67(1), 2020, 59–64 [https://doi.org/10.24425/ijet.2021.135944]. DOI: https://doi.org/10.24425/ijet.2021.135944
[14] Smailov N. et al.: Streamlining Digital Correlation-Interferometric Direction Finding with Spatial Analytical Signal. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(3), 2024, 43–48 [https://doi.org/10.35784/iapgos.6177]. DOI: https://doi.org/10.35784/iapgos.6177
[15] Tereikovskyi I. et al.: Method for Constructing Neural Network Means for Recognizing Scenes of Political Extremism in Graphic Materials of Online Social Networks. International Journal of Computer Network and Information Security 16(3), 2024, 52–69 [https://doi.org/10.5815/ijcnis.2024.03.05]. DOI: https://doi.org/10.5815/ijcnis.2024.03.05
Article Details
Abstract views: 316

