Modified cosine-quadratic reflectance model

Oleksandr Romanyuk


Vinnytsia National Technical University (Ukraine)
https://orcid.org/0000-0002-2245-3364

Volodymyr Lytvynenko

immun56@gmail.com
Kherson National Technical University (Ukraine)
https://orcid.org/0000-0002-1536-5542

Yevhen Zavalniuk


Vinnytsia National Technical University (Ukraine)
https://orcid.org/0009-0005-1202-4653

Abstract

In the article, a new light reflectance model is proposed. The model is based on the modified cosine-quadratic bidirectional reflectance distribution function. The concept of bidirectional reflectance distribution function is analyzed. The disadvantages of existing physically accurate and empirical bidirectional reflectance distribution functions, including classical cosine-quadratic function, are discussed. The necessity of new empirical distributive functions development is justified. The comparison of double integrals of hemispherical reflectivity of reference Blinn function and classical cosine-quadratic function is provided. Based on the comparison, the new expression of cosine-quadratic distributive function calculation is obtained. The proposed expression makes it possible to significantly increase the accuracy of glare epicentre reproduction and is intended for use in highly productive three-dimensional rendering systems


Keywords:

bidirectional reflectance distribution function, rendering, shading, visualization

[1] Boksansky J.: Crash Course in BRDF Implementation [https://www.researchgate.net/profile/Jakub-Boksansky/publication/350052593_Crash_Course_in_BRDF_Implementation/links/604e0290a6fdcccfee7d9a9c/Crash-Course-in-BRDF-Implementation.pdf] (available: 25.01.2025).
  Google Scholar

[2] Butler S. D., Marciniak M. A.: Utilization and efficient computation of polarization factor Q for fast, accurate BRDF modeling. Optics Express 4/2022, 5803–5816 [https://doi.org/10.1364/oe.448157].
  Google Scholar

[3] Butler S. D., Nauyoks S. E., Marciniak M. A.: Comparison of microfacet BRDF model elements to diffraction BRDF model elements. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Baltimore 2015, 94720C.
  Google Scholar

[4] Chen L. et al.: A Microfacet-Based Reflectance Model for Photometric Stereo with Highly Specular Surfaces. IEEE International Conference on Computer Vision (ICCV), Venice 2017, 3181–3189.
  Google Scholar

[5] Compean M. E., Small T. V.: Evaluation of microfacet BRDF solar cell model modification using experimental data. Optical Modeling and Performance Predictions XII, San Diego 2022, 122150B.
  Google Scholar

[6] Giesen F.: Phong normalization factor derivation. [https://www.farbrausch.de/~fg/stuff/phong.pdf] (available: 25.01.2025).
  Google Scholar

[7] Guarnera D. et al.: BRDF Representation and Acquisition. Computer Graphics Forum 2, 2016, 625–650 [https://doi.org/10.1111/cgf.12867].
  Google Scholar

[8] Guarnera G. C. et al.: BxDF material acquisition, representation, and rendering for VR and design. SA'19: SIGGRAPH Asia 2019 Courses, Brisbane 2019, 1–17.
  Google Scholar

[9] Guo F. et al.: A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials. Photonics 7, 2023, 773 [https://doi.org/10.3390/photonics10070773].
  Google Scholar

[10] Ichikawa T., Fukao Y., Nobuhara S.: Fresnel Microfacet BRDF: Unification of Polari-Radiometric Surface-Body Reflection. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver 2023, 16489–16497.
  Google Scholar

[11] Kavoosighafi B. et al.: Deep SVBRDF Acquisition and Modelling: A Survey. Computer Graphics Forum 6, 2024, e15199 [https://doi.org/10.1111/cgf.15199].
  Google Scholar

[12] Kim H. et al.: SwitchLight: Co-design of Physics-driven Architecture and Pre-training Framework for Human Portrait Relighting. arXiv: 2402.18848, 2024.
  Google Scholar

[13] Lafortune E., Willems Y.: Using the Modified Phong Reflectance Model for Physically Based Rendering. K.U. Leven, Leven 1994.
  Google Scholar

[14] Lyon R. F.: Phong shading reformulation for hardware renderer simplification. Apple Computer, Inc., 1993.
  Google Scholar

[15] Mikkelstrup A. F., Thomsen A. N., Kristiansen M.: A novel method for approximating local changes in the surface absorption for laser marking using 3D laser scanning. 18th Nordic Laser Materials Processing Conference –18th NOLAMP, Luleå 2022, 012002.
  Google Scholar

[16] Montes R., Ureña C.: An Overview of BRDF Models. University of Granada, Granada 2012.
  Google Scholar

[17] Raybaud B. et al.: Identification of BRDF parameters with spectral measurements in the visible light spectrum towards solar irradiation evaluation in urban environment for photovoltaïc technologies. Energy and buildings 263, 2022, 112034 [https://doi.org/10.1016/j.enbuild.2022.112034].
  Google Scholar

[18] Rhee C.-H., Lee C. H.: Estimating Physically-Based Reflectance Parameters From a Single Image With GAN-Guided CNN. IEEE Access 10, 2022, 13259–13269 [https://doi.org/10.1109/access.2022.3147483].
  Google Scholar

[19] Romanyuk O. et al: New surface reflectance model with the combination of two cubic functions usage. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 3/2023, 101–106 [https://doi.org/10.35784/iapgos.5327].
  Google Scholar

[20] Romanyuk O. et al.: The Development of Physically Correct Reflectance Model Based on Logarithm Function. 13th International Conference on Advanced Computer Information Technologies (ACIT), Wrocław 2023, 483–487.
  Google Scholar

[21] Romanyuk S. O. et al.: Modification of existing methods of visualization of offset face skin structure. Proc. SPIE 11456, 2020, 114560E.
  Google Scholar

[22] Sawicki D.: Microfacet Distribution Function: To Change or Not to Change, That Is the Question. 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - VISIGRAPP 2021, Vol. I, 209–220.
  Google Scholar

[23] Shirley P., Ashikhmin M., Marschner S.: Fundamentals of Computer Graphics 3rd ed. A K Peters/CRC Press, New York 2009.
  Google Scholar

[24] Sun L., Zhao F.: Bidirectional reflectance distribution function algorithm based on the Poynting vector analysis. Optical Engineering 6, 2021, 063104 [https://doi.org/10.1117/1.oe.60.6.063104].
  Google Scholar

[25] Wang X., Meng L.: Research on physical reliability rendering algorithm. IEEE Access 2024, 1–11 [https://doi.org/10.1109/access.2024.3430535].
  Google Scholar

[26] Yang J.: Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation. arXiv: 2410.12414, 2024.
  Google Scholar

[27] Yang Y., Yang K., Zhang A.: Influence of Target Surface BRDF on Non-Line-of-Sight Imaging. J. Imaging 11, 2024, 273 [https://doi.org/10.3390/jimaging10110273].
  Google Scholar

[28] Yoshimura Y. et al.: Light Curve Approximation Using an Attitude Model of Solar Sail Spacecraft. Journal of Guidance, Control, and Dynamics 10, 2020, 1960–1966 [https://doi.org/10.2514/1.g004966].
  Google Scholar

[29] Zhou Y.: An overview of BRDF models in computer graphics. Theoretical and Natural Science 19, 2023, 205–210 [https://doi.org/10.54254/2753-8818/19/20230550].
  Google Scholar

[30] Zou J., Wu S., Zhou L.: Improved normal distribution function for skin specular reflection rendering based on GGX distribution. 3rd International Conference on Computer Graphics, Image and Virtualization - ICCGIV 2023, Nanjing 2023, 129341L.
  Google Scholar

Download


Published
2025-03-31

Cited by

Romanyuk, O., Lytvynenko, V., & Zavalniuk, Y. (2025). Modified cosine-quadratic reflectance model. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 15(1), 45–48. https://doi.org/10.35784/iapgos.7384

Authors

Oleksandr Romanyuk 

Vinnytsia National Technical University Ukraine
https://orcid.org/0000-0002-2245-3364

Authors

Volodymyr Lytvynenko 
immun56@gmail.com
Kherson National Technical University Ukraine
https://orcid.org/0000-0002-1536-5542

Authors

Yevhen Zavalniuk 

Vinnytsia National Technical University Ukraine
https://orcid.org/0009-0005-1202-4653

Statistics

Abstract views: 23
PDF downloads: 23


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)