Modified cosine-quadratic reflectance model
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
In the article, a new light reflectance model is proposed. The model is based on the modified cosine-quadratic bidirectional reflectance distribution function. The concept of bidirectional reflectance distribution function is analyzed. The disadvantages of existing physically accurate and empirical bidirectional reflectance distribution functions, including classical cosine-quadratic function, are discussed. The necessity of new empirical distributive functions development is justified. The comparison of double integrals of hemispherical reflectivity of reference Blinn function and classical cosine-quadratic function is provided. Based on the comparison, the new expression of cosine-quadratic distributive function calculation is obtained. The proposed expression makes it possible to significantly increase the accuracy of glare epicentre reproduction and is intended for use in highly productive three-dimensional rendering systems
Keywords:
References
[1] Boksansky J.: Crash Course in BRDF Implementation [https://www.researchgate.net/profile/Jakub-Boksansky/publication/350052593_Crash_Course_in_BRDF_Implementation/links/604e0290a6fdcccfee7d9a9c/Crash-Course-in-BRDF-Implementation.pdf] (available: 25.01.2025).
[2] Butler S. D., Marciniak M. A.: Utilization and efficient computation of polarization factor Q for fast, accurate BRDF modeling. Optics Express 4/2022, 5803–5816 [https://doi.org/10.1364/oe.448157]. DOI: https://doi.org/10.1364/OE.448157
[3] Butler S. D., Nauyoks S. E., Marciniak M. A.: Comparison of microfacet BRDF model elements to diffraction BRDF model elements. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Baltimore 2015, 94720C. DOI: https://doi.org/10.1117/12.2177221
[4] Chen L. et al.: A Microfacet-Based Reflectance Model for Photometric Stereo with Highly Specular Surfaces. IEEE International Conference on Computer Vision (ICCV), Venice 2017, 3181–3189. DOI: https://doi.org/10.1109/ICCV.2017.343
[5] Compean M. E., Small T. V.: Evaluation of microfacet BRDF solar cell model modification using experimental data. Optical Modeling and Performance Predictions XII, San Diego 2022, 122150B. DOI: https://doi.org/10.1117/12.2632802
[6] Giesen F.: Phong normalization factor derivation. [https://www.farbrausch.de/~fg/stuff/phong.pdf] (available: 25.01.2025).
[7] Guarnera D. et al.: BRDF Representation and Acquisition. Computer Graphics Forum 2, 2016, 625–650 [https://doi.org/10.1111/cgf.12867]. DOI: https://doi.org/10.1111/cgf.12867
[8] Guarnera G. C. et al.: BxDF material acquisition, representation, and rendering for VR and design. SA'19: SIGGRAPH Asia 2019 Courses, Brisbane 2019, 1–17. DOI: https://doi.org/10.1145/3355047.3362092
[9] Guo F. et al.: A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials. Photonics 7, 2023, 773 [https://doi.org/10.3390/photonics10070773]. DOI: https://doi.org/10.3390/photonics10070773
[10] Ichikawa T., Fukao Y., Nobuhara S.: Fresnel Microfacet BRDF: Unification of Polari-Radiometric Surface-Body Reflection. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver 2023, 16489–16497. DOI: https://doi.org/10.1109/CVPR52729.2023.01582
[11] Kavoosighafi B. et al.: Deep SVBRDF Acquisition and Modelling: A Survey. Computer Graphics Forum 6, 2024, e15199 [https://doi.org/10.1111/cgf.15199]. DOI: https://doi.org/10.1111/cgf.15199
[12] Kim H. et al.: SwitchLight: Co-design of Physics-driven Architecture and Pre-training Framework for Human Portrait Relighting. arXiv: 2402.18848, 2024. DOI: https://doi.org/10.1109/CVPR52733.2024.02371
[13] Lafortune E., Willems Y.: Using the Modified Phong Reflectance Model for Physically Based Rendering. K.U. Leven, Leven 1994. DOI: https://doi.org/10.1111/1467-8659.1320097
[14] Lyon R. F.: Phong shading reformulation for hardware renderer simplification. Apple Computer, Inc., 1993.
[15] Mikkelstrup A. F., Thomsen A. N., Kristiansen M.: A novel method for approximating local changes in the surface absorption for laser marking using 3D laser scanning. 18th Nordic Laser Materials Processing Conference –18th NOLAMP, Luleå 2022, 012002. DOI: https://doi.org/10.1088/1757-899X/1135/1/012002
[16] Montes R., Ureña C.: An Overview of BRDF Models. University of Granada, Granada 2012.
[17] Raybaud B. et al.: Identification of BRDF parameters with spectral measurements in the visible light spectrum towards solar irradiation evaluation in urban environment for photovoltaïc technologies. Energy and buildings 263, 2022, 112034 [https://doi.org/10.1016/j.enbuild.2022.112034]. DOI: https://doi.org/10.1016/j.enbuild.2022.112034
[18] Rhee C.-H., Lee C. H.: Estimating Physically-Based Reflectance Parameters From a Single Image With GAN-Guided CNN. IEEE Access 10, 2022, 13259–13269 [https://doi.org/10.1109/access.2022.3147483]. DOI: https://doi.org/10.1109/ACCESS.2022.3147483
[19] Romanyuk O. et al: New surface reflectance model with the combination of two cubic functions usage. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 3/2023, 101–106 [https://doi.org/10.35784/iapgos.5327]. DOI: https://doi.org/10.35784/iapgos.5327
[20] Romanyuk O. et al.: The Development of Physically Correct Reflectance Model Based on Logarithm Function. 13th International Conference on Advanced Computer Information Technologies (ACIT), Wrocław 2023, 483–487. DOI: https://doi.org/10.1109/ACIT58437.2023.10275589
[21] Romanyuk S. O. et al.: Modification of existing methods of visualization of offset face skin structure. Proc. SPIE 11456, 2020, 114560E. DOI: https://doi.org/10.1117/12.2569770
[22] Sawicki D.: Microfacet Distribution Function: To Change or Not to Change, That Is the Question. 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - VISIGRAPP 2021, Vol. I, 209–220. DOI: https://doi.org/10.5220/0010252702090220
[23] Shirley P., Ashikhmin M., Marschner S.: Fundamentals of Computer Graphics 3rd ed. A K Peters/CRC Press, New York 2009. DOI: https://doi.org/10.1201/9781439865521
[24] Sun L., Zhao F.: Bidirectional reflectance distribution function algorithm based on the Poynting vector analysis. Optical Engineering 6, 2021, 063104 [https://doi.org/10.1117/1.oe.60.6.063104]. DOI: https://doi.org/10.1117/1.OE.60.6.063104
[25] Wang X., Meng L.: Research on physical reliability rendering algorithm. IEEE Access 2024, 1–11 [https://doi.org/10.1109/access.2024.3430535]. DOI: https://doi.org/10.1109/ACCESS.2024.3430535
[26] Yang J.: Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation. arXiv: 2410.12414, 2024.
[27] Yang Y., Yang K., Zhang A.: Influence of Target Surface BRDF on Non-Line-of-Sight Imaging. J. Imaging 11, 2024, 273 [https://doi.org/10.3390/jimaging10110273]. DOI: https://doi.org/10.3390/jimaging10110273
[28] Yoshimura Y. et al.: Light Curve Approximation Using an Attitude Model of Solar Sail Spacecraft. Journal of Guidance, Control, and Dynamics 10, 2020, 1960–1966 [https://doi.org/10.2514/1.g004966]. DOI: https://doi.org/10.2514/1.G004966
[29] Zhou Y.: An overview of BRDF models in computer graphics. Theoretical and Natural Science 19, 2023, 205–210 [https://doi.org/10.54254/2753-8818/19/20230550]. DOI: https://doi.org/10.54254/2753-8818/19/20230550
[30] Zou J., Wu S., Zhou L.: Improved normal distribution function for skin specular reflection rendering based on GGX distribution. 3rd International Conference on Computer Graphics, Image and Virtualization - ICCGIV 2023, Nanjing 2023, 129341L. DOI: https://doi.org/10.1117/12.3008031
Article Details
Abstract views: 186

