OPPORTUNITIES FOR THE OUT OF THE 1550 nm WINDOW TRANSMISSION
Jarosław Piotr Turkiewicz
jturkiew@tele.pw.edu.pl1Warsaw University of Technology, Faculty of Electronics and Information Technology, Warsaw, Poland, 2Orange Labs Poland, 7 Obrzeżna, Warsaw (Poland)
http://orcid.org/0000-0003-2345-4147
Abstract
In this paper, opportunities for transmission in the 850 nm and 1310 nm windows are reviewed. In particular, the mentioned windows can be utilized for the data centre related transmission.
Keywords:
optical communication, optical fibre, optical amplifierReferences
Chi K.-L., Shi Y.-X., Chen X.-N., Chen J., Yang Y.-J., Kropp J.-R., Ledentsov Jr. N., Agustin M., Ledentsov N.N., Stepniak G., Turkiewicz J.P., Shi J.-W: Single-Mode 850-nm VCSELs for 54-Gb/s ON–OFF Keying Transmission Over 1-km Multi-Mode Fiber. IEEE Photonics Technology Letters 12/2016, 1367–1370 [DOI: 10.1109/LPT.2016.2542099].
Google Scholar
Chorchos Ł., Turkiewicz J.P.: Experimental performance of semiconductor optical amplifiers and praseodymium-doped fiber amplifiers in 1310-nm dense wavelength division multiplexing system. Optical Engineering 56/2017, 046101 [DOI 10.1117/1.OE.56.4.046101].
Google Scholar
Czyżak P., Mazurek P., Turkiewicz J.P.: 1310 nm Raman amplifier utilizing high-power, quantum-dot pumping lasers. Optics & Laser Technology, 64/2014, 195–203 [DOI: 10.1016/j.optlastec.2014.05.013].
Google Scholar
https://www.nobelprize.org/prizes/physics/2009/kao/facts/ (available 30.05.2019).
Google Scholar
Kropp J.-R., Steinle G., Schäfer G., Shchukin V.A., Ledentsov N.N., Turkiewicz J.P., Zoldak M.: Accelerated aging of 28 Gb s−1 850 nm vertical-cavity surface-emitting laser with multiple thick oxide apertures. Semiconductor Science and Technology 30/2015 [DOI: 10.1088/0268-1242/30/4/045001].
Google Scholar
Larrode M.G., Koonen A.M.J., Vegas-Olmos J.J., Verdurmen E.J.M., Turkiewicz J.P.: Dispersion tolerant radio-over-fibre transmission of 16 and 64 QAM radio signals at 40 GHz. Electronics Letters 42/2006, 872–874 [DOI: 10.1049/el:20061311].
Google Scholar
Ledentsov N.N., Shchukin V.A., Kalosha V.P., Ledentsov N.N., Kropp J.-R., Agustin M., Chorchos Ł., Stępniak G., Turkiewicz J.P., Shi J.-W: Anti–waveguiding vertical–cavity surface–emitting laser at 850 nm: From concept to advances in high–speed data transmission. Optics Express 26/2018, 445–453 [DOI 10.1364/OE.26.000445].
Google Scholar
Markowski K., Chorchos Ł., Turkiewicz J.P.: Influence of the Four-Wave Mixing in short and medium range 1310 nm DWDM systems. Applied Optics 55/2016, 3051–3057 [DOI 10.1364/AO.55.003051].
Google Scholar
Mazurek P., Czyżak P., de Waard, H., Turkiewicz J.P.: Up to 112 Gbit/s single wavelength channel transmission in the 1310 nm wavelength domain. Microwave and Optical Technology Letters 2/2014, 263–265 [DOI: 10.1002/mop.28054].
Google Scholar
Mazurek P., Czyżak P., de Waardt H., Turkiewicz J.P.: SOA and Raman amplification for 1310 nm DWDM transmission. Optical Engineering 54/2015, 116104 [DOI: 10.1117/1.OE.54.11.116104].
Google Scholar
Mazurek P., de Waardt H., Turkiewicz J.P.: Towards 1 Tbit/s SOA based 1310 nm transmission for LAN/data center applications. IET Optoelectronics 9/2015, 1–9 [DOI: 10.1049/iet-opt.2014.0031].
Google Scholar
Nesset D., Wright P.: Raman extended GPON using 1240 nm semiconductor quantum-dot lasers. Optical Fiber Communication Conference (OFC) 2010, OThW6, April 2010.
Google Scholar
Puerta R., V. Olmos, J.J., Tafur Monroy I., Ledentsov N.N., Turkiewicz J.P.: Flexible MultiCAP Modulation and its Application to 850 nm VCSEL-MMF Links. IEEE Journal of Lightwave Technology 35/2017, 3168–3173 [DOI: 10.1109/JLT.2017.2701887].
Google Scholar
Puerta Ramirez R., Agustin M., Chorchos Ł., Toński J., Kropp J.R., Ledentsov Jr. N., Shchukin V.A.,. Ledentsov N.N, Henker R., Tafur Monroy I., Vegas Olmos J.J., Turkiewicz J.P.: Effective 100 Gb/s IM/DD 850 nm multi- and single-mode VCSEL transmission through OM4 MMF. IEEE Journal of Lightwave Technology 35/2017, 423–429 [DOI: 10.1109/JLT.2016.2625799].
Google Scholar
Recommendations ITU-T G.652 Characteristics of a Single-Mode Optical Fiber and Cable, (10/2009). Online. http://www.itu.int/rec/T-RECG.652-200911-I.
Google Scholar
Stępniak G., Chorchos Ł., Agustin M., Kropp J.-R., Ledentsov N.N., Shchukin V.A, Ledentsov Jr. N.N., Turkiewicz J.P.: Up to 108 Gb/s PAM 850 nm Multi and Single Mode VCSEL Transmission over 100 m of Multi Mode Fiber. ECOC 2016; 42nd European Conference on Optical Communication, Dusseldorf, Germany, 2016, 1–3.
Google Scholar
Stepniak G., Lewandowski A., Kropp J.R., Ledentsov N.N., Shchukin V.A., Ledentsov Jr. N., Schaefer G., Agustin M., Turkiewicz J.P.: 54 Gbps OOK transmission using single mode VCSEL up to 2.2 km MMF. IET Electronics Letters 52/2016, 633–635 [DOI: 10.1049/el.2015.4264].
Google Scholar
Thipparapu N.K., Umnikov A.A., Barua P., Sahu J.K.: Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320–1360 nm. Optics Letters 41/2016, 1518–1521 [DOI: 10.1364/OL.41.001518].
Google Scholar
Turkiewicz J.P., Kropp J.-R., Ledentsov N.N., Shchukin V.A., Schafer G.: High speed optical data transmission with compact 850nm TO-can assemblies. IEEE Journal of Quantum Electronics 50/2014, 281–286 [DOI 10.1109/JQE.2014.2304742].
Google Scholar
Turkiewicz J.P., Tangdiongga E., Rohde H., Schairer W., Lehmann G., Khoe G.D., de Waardt H.: Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch. Electronics Letters 10/2003, 795–796 [DOI: 10.1049/el:20030535].
Google Scholar
Turkiewicz J.P., de Waardt H.: Low Complexity up to 400-Gb/s Transmission in the 1310 nm Wavelength Domain. IEEE Photonics Technology Letters 11/2012, 942–944 [DOI: 10.1109/LPT.2012.2191278].
Google Scholar
Turkiewicz J.P., Khoe G.D., de Waardt H.: All-optical 1310 to 1550 nm wavelength conversion by utilising nonlinear polarisation rotation in semiconductor optical amplifier. Electronics Letters 1/2005, 29–30 [DOI: 10.1049/el:20057435].
Google Scholar
Turkiewicz J.P.: Cost-effective n × 25 Gbit/s DWDM transmission in the 1310 nm wavelength domain. Optical Fiber Technology 17/2011, 179–184 [DOI 10.1016/j.yofte.2011.01.010].
Google Scholar
Turkiewicz J.P: Analysis of the SSMF zero-dispersion wavelength location and its influence on high capacity 1310 nm transmission. 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, 2013, 1–3 [DOI: 10.1364/NFOEC.2013.JW2A.06].
Google Scholar
Wieckowski M., Jensen J.B., Tafur Monroy I., Siuzdak J., Turkiewicz J.P.: 300 Mbps transmission with 4.6 bit/s/Hz spectral efficiency over 50 m PMMA POF link using RC-LED and multilevel Carrierless Amplitude Phase modulation. 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, 2011, 1–3.
Google Scholar
Winzer P. J.: Energy-efficient optical transport capacity scaling through spatial multiplexing. IEEE Photonics Technology Letters, 23/2011, 851-853 [DOI 10.1109/LPT.2011.2140103].
Google Scholar
Authors
Jarosław Piotr Turkiewiczjturkiew@tele.pw.edu.pl
1Warsaw University of Technology, Faculty of Electronics and Information Technology, Warsaw, Poland, 2Orange Labs Poland, 7 Obrzeżna, Warsaw Poland
http://orcid.org/0000-0003-2345-4147
Statistics
Abstract views: 231PDF downloads: 149
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.