СROSS PLATFORM TOOLS FOR MODELING AND RECOGNITION OF THE FINGERSPELLING ALPHABET OF GESTURE LANGUAGE
Article Sidebar
Open full text
Issue Vol. 9 No. 2 (2019)
-
OPPORTUNITIES FOR THE OUT OF THE 1550 nm WINDOW TRANSMISSION
Jarosław Piotr Turkiewicz4-7
-
TOWARDS A DIFFERENT WORLD – ON THE POTENTIAL OF THE INTERNET OF EVERYTHING
Mirosław Płaza, Radosław Belka, Zbigniew Szcześniak8-11
-
USE OF THERMAL IMAGING IN CONSTRUCTION
Danuta Proszak-Miąsik12-15
-
THE CONSTRUCTION OF THE FEATURE VECTOR IN THE DIAGNOSIS OF SARCOIDOSIS BASED ON THE FRACTAL ANALYSIS OF CT CHEST IMAGES
Zbigniew Omiotek, Paweł Prokop16-23
-
СROSS PLATFORM TOOLS FOR MODELING AND RECOGNITION OF THE FINGERSPELLING ALPHABET OF GESTURE LANGUAGE
Serhii Kondratiuk, Iurii Krak, Waldemar Wójcik24-27
-
RESEARCH OF PARAMETERS OF FIBER-OPTICAL MEASURING SYSTEMS
Waldemar Wójcik, Aliya Kalizhanova, Gulzhan Kashaganova, Ainur Kozbakova, Zhalau Aitkulov, Zhassulan Orazbekov28-31
-
DETERMINATION OF THE PROBABILITY FACTOR OF PARTICLES MOVEMENT IN A GAS-DISPERSED TURBULENT FLOW
Saltanat Adikanova, Waldemar Wójcik, Natalya Denissova, Yerzhan Malgazhdarov, Ainagul Kadyrova32-35
-
DEVELOPMENT OF WIND ENERGY COMPLEX AUTOMATION SYSTEM
Kuanysh Mussilimov, Akhmet Ibraev, Waldemar Wójcik36-40
-
PULVERIZED COAL COMBUSTION ADVANCED CONTROL TECHNIQUES
Konrad Gromaszek41-45
-
THE PROSPECTS FOR THE USE OF INTELLIGENT SYSTEMS IN THE PROCESSES OF GRAVITATIONAL ENRICHMENT
Batyrbek Aitbaevich Suleimenov, Yelena Kulakova46-49
-
MODELING OF PROCESSES IN CRUDE OIL TREATED WITH LOW-FREQUENCY SOUNDS
Yelena Blinayeva, Saule Smailova50-53
-
INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS
Sergii Pavlov, Yosyp Saldan, Dina Vovkotrub-Lyahovska, Yuliia Saldan, Valentina Vassilenko, Yuliia Yakusheva54-59
-
GENERATORS OF ONE-TIME TWO-FACTOR AUTHENTICATION PASSWORDS
Olga Ussatova, Saule Nyssanbayeva60-63
-
MATHEMATICAL MODELING OF THE PROCESS OF DRAWING AN OPTICAL FIBER USING THE LANGEVIN EQUATION
Aliya Tergeussizova64-67
-
MODERN MANAGEMENT OF NATIONAL COMPETITIVENESS
Nataliia Savina, Olha Romanko, Sergii Pavlov, Volodymyr Lytvynenko68-71
-
APPLICATION OF HYDRAULIC AUTOMATION EQUIPMENT FOR THE EFFICIENCY ENHANCEMENT OF THE OPERATION ELEMENTS OF THE MOBILE MACHINERY
Leonid Polishchuk, Leonid Kozlov, Yuri Burennikov, Vasil Strutinskiy, Valerii Kravchuk72-78
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
Abstract
A solution for the problems of the finger spelling alphabet of gesture language modelling and recognition based on cross-platform technologies is proposed. Modelling and recognition performance can be flexible and adjusted, based on the hardware it operates or based on the availability of an internet connection. The proposed approach tunes the complexity of the 3D hand model based on the CPU type, amount of available memory and internet connection speed. Sign recognition is also performed using cross-platform technologies and the tradeoff in model size and performance can be adjusted. the methods of convolutional neural networks are used as tools for gestures of alphabet recognition. For the gesture recognition experiment, a dataset of 50,000 images was collected, with 50 different hands recorded, with almost 1,000 images per each person. The experimental researches demonstrated the effectiveness of proposed approaches.
Keywords:
References
Apple Touchless Gesture System for iDevices http://www.patentlyapple.com/patently-apple/2014/12/apple-invents-a-highly-advanced-air-gesturing-system-for-future-idevices-and-beyond.html (available 15.05.2019).
ASL Sign language dictionary http://www.signasl.org/sign/model (available 15.05.2019).
Howard A.G., Wang W.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications https://arxiv.org/pdf/1704.04861.pdf (available 15.05.2019).
Khan R.Z., Ibraheem N.A., Meghanathan N., et al.: Comparative study of hand gesture recognition system. SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06/2012, 203–213.
Krak I., Kondratiuk S.: Cross-platform software for the development of sign communication system: Dactyl language modelling, Proceedings of the 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 1/2017, 167–170 [DOI: 10.1109/STC-CSIT.2017.8098760].
Krizhevsky I. Sutskever, Hinton G.E.: Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 2012, 1097–1105.
Kryvonos I.G., Krak I.V., Barchukova Y., Trotsenko B.A.: Human hand motion parametrization for dactylemes modeling. Journal of Automation and Information Sciences 43(12)/2011, 1–11.
Kryvonos I.G., Krak I.V., Barmak O.V., Shkilniuk D.V.: Construction and identification of elements of sign communication. Cybernetics and Systems Analysis 49(2)/2013, 163–172.
Kryvonos I.G., Krak I.V.: Modeling human hand movements, facial expressions, and articulation to synthesize and visualize gesture information. Cybernetics and Systems Analysis 47(4)/2011, 501–505.
Mell P., Grance T.: The NIST Definition of Cloud Computing (Technical report). National Institute of Standards and Technology: U.S. Department of Commerce, 2011 [DOI:10.6028/NIST.SP.800-145].
Neff M., Kipp M., Albrecht I., Seidel H.P.: Gesture Modeling and Animation by Imitation. MPI–I 4/2006.
Ong E.I., et al. : Sign language recognition using sequential pattern trees. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, 2200–2207.
Raheja J.: Android based portable hand sign recognition system. 2015 [DOI: 10.15579/gcsr.vol3.ch1].
Shapiro A., Chu D., Allen B., Faloutsos P.: Dynamic Controller Toolkit, 2005 http://www.arishapiro.com/Sandbox07_DynamicToolkit.pdf (available 15.05.2019).
Smith J., Navi R.: The Architecture of Virtual Machines. Computer. IEEE Computer Society 38(5)/2005, 32–38.
Tensorflow framework documentation https://www.tensorflow.org/api/ (available 15.05.2019).
The Linux Information Project, Cross-platform Definition.
Unity3D framework https://unity3d.com/ (available 15.05.2019).
YAML – The Official YAML Web Site http://yaml.org/ (available 15.05.2019).
Article Details
Abstract views: 435
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
