THE REVIEW OF SELECTED ELECTRICAL ENERGY STORAGE TECHNIQUES
Aleksander Chudy
aleksander.chudy@pollub.edu.plLublin University of Technology (Poland)
http://orcid.org/0000-0002-3183-8450
Abstract
The article contains basic information about selected mechanical, electrical and electrochemical techniques of electrical energy storage. Due to the rising popularity of renewable resources, electrical energy storage systems will play more and more significant role in the power engineering, electronics, car manufacturing and other key areas. This situation leads to the need to raise awareness of electrical energy storage.
Keywords:
energy storage, batteries, flywheels, supercapacitors, superconducting magnetic energyReferences
Amiryar M. E., Pullen K. R.: A Review of Flywheel Energy Storage System Technologies and Their Applications. Applied Sciences 7(3)/2017, 286, [DOI: 10.3390/app7030286].
Google Scholar
Béguin F.: Supercapacitors. Wiley-VCH, Weinheim 2013.
Google Scholar
Bender D. A.: Recommended Practices for the Safe Design and Operation of Flywheels, 2015.
Google Scholar
Boicea V. A.: Energy Storage Technologies: The Past and the Present. Proc. IEEE 102(11)/2014, 1777–1794, [DOI: 10.1109/JPROC.2014.2359545].
Google Scholar
Bolund B., Bernhoff H., Leijon M.: Flywheel energy and power storage systems Renewable and Sustainable Energy Reviews, 11(2), 2007, 235–258.
Google Scholar
Chang L.: Review on Distributed Energy Storage Systems for Utility Applications. CPSS Transactions on Power Electronics and Applications 2(4), 2017, 267–276. [DOI: 10.24295/CPSSTPEA.2017.00025].
Google Scholar
Chen H., Cong G., Lu Y.-C.: Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. Journal of Energy Chemistry 27(5)/2018, 1304–1325, [DOI: 10.1016/j.jechem.2018.02.009].
Google Scholar
Chudy A.: Nowoczesne technologie magazynowania energii elektrycznej. Praca magisterska, Katedra Sieci Elektrycznych i Zabezpieczeń, Politechnika Lubelska, Lublin 2018.
Google Scholar
Díaz-González F., Sumper A., Gomis-Bellmunt O., Villafáfila-Robles R.: A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16(4)/2012, 2154–2171, [DOI: 10.1016/j.rser.2012.01.029].
Google Scholar
Farhadi M., Mohammed O.: Energy Storage Technologies for High-Power Applications. IEEE Transactions on Industry Applications 52(3)/2016, 1953–1961, [DOI:10.1109/TIA.2015.2511096].
Google Scholar
Gaede J., Rowlands I. H.: How ‘transformative’ is energy storage?: Insights from stakeholder perceptions in Ontario. Energy Research & Social Science 44/2018, 268–277, [DOI:10.1016/j.erss.2018.05.030].
Google Scholar
Hiksas M. M., Aninditio M. L.: Redox Flow Batteries for small scale energy storage. 2016 IEEE Conference on Technologies for Sustainability (SusTech), 2016, 134–139, [DOI:10.1109/SusTech.2016.7897155].
Google Scholar
Hu X., Zou C., Zhang C., Li Y.: Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs. IEEE Power and Energy Magazine 15(5)/2017, 20–31, [DOI:10.1109/MPE.2017.2708812].
Google Scholar
Huggins R. A.: Energy storage. Springer 2016.
Google Scholar
Janowski T.: Nadprzewodnikowe zasobniki energii. Liber Duo, Lublin 2007.
Google Scholar
Jarnut M., Wermiński S., Kaniewski J., Waśkowicz B.: Properties of small-scalle flow battery for prosumer-owned microgrid. IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, 6566–6571, [DOI:10.1109/IECON.2016.7794008].
Google Scholar
Letcher T. M.: Storing energy with special reference to renewable energy sources. Elsevier, Amsterdam 2016.
Google Scholar
Libich J., Máca J., Vondrák J., Čech O., Sedlaříková M.: Supercapacitors: Properties and applications. Journal of Energy Storage 17/2018, 224–227, [DOI:10.1016/j.est.2018.03.012].
Google Scholar
Luo X., Wang J., Dooner M., Clarke J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy 137/2015, 511–536, [DOI: 10.1016/j.apenergy.2014.09.081].
Google Scholar
Miller J. R.: Perspective on electrochemical capacitor energy storage. Applied Surface Science 460/2017, 3–7, [DOI: 10.1016/j.apsusc.2017.10.018].
Google Scholar
Moseley P. T., Garche J.: Electrochemical energy storage for renewable sources and grid balancing. Elsevier, Amsterdam 2015.
Google Scholar
Mousavi G. S. M., Faraji F., Majazi A., Al-Haddad K.: A comprehensive review of Flywheel Energy Storage System technology. Renewable and Sustainable Energy Reviews 67/2017, 477–490 [DOI:10.1016/j.rser.2016.09.060].
Google Scholar
Musbaudeen O. B., Saif A., Hong S.: Prospects of recently developed membraneless cell designs for redox flow batteries. Renewable and Sustainable Energy Reviews 70/2017, 506–518, [DOI: 10.1016/j.rser.2016.11.234].
Google Scholar
Peña-Alzola R., Sebastián R., Quesada J., Colmenar A.: Review of flywheel based energy storage systems. 2011 International Conference on Power Engineering, Energy and Electrical Drives, 1–6, 2011, [DOI: 10.1109/PowerEng.2011.6036455].
Google Scholar
Rufer A.: Energy storage. CRC Press, Taylor & Francis Group, Boca Raton 2018.
Google Scholar
RWE Power: ADELE Adiabatic Compressed-Air Energy Storage for Electricity Supply. RWE Power AG, Essen/Koln 2010.
Google Scholar
Schlunegger H.: Pumping efficiency-A 100 MW converter for the Grimsel 2 pumped storage plant, 2014. [04.10.2018].
Google Scholar
Weber A. Z., Mench M. M., Meyers J. P., Ross P. N., Gostick J. T., Liu Q.: Redox flow batteries. A review Journal of Applied Electrochemistry 41(10)/2011, 1137, [DOI: 10.1007/s10800-011-0348-2].
Google Scholar
Whitehead A. H., Rabbow T. J., Trampert M., Pokorny P.: Critical safety features of the vanadium redox flow battery. Journal of Power Sources 351/2017, 1–7, [DOI: 10.1016/j.jpowsour.2017.03.075].
Google Scholar
Yan J.: Handbook of Clean Energy Systems. John Wiley & Sons, Ltd, Chichester 2015.
Google Scholar
Yu A.: Electrochemical supercapacitors for energy storage and delivery. Taylor & Francis, Boca Raton 2013.
Google Scholar
Zohuri B.: Hybrid energy systems. Springer International Publishing, Cham 2018.
Google Scholar
http://www.energystoragesense.com/superconducting-magnetic-energy-storage-smes/ [05.10.2018].
Google Scholar
http://www.pgeeo.pl/Nasze-obiekty/Elektrownie-wodne/Zarnowiec. [05.10.2018].
Google Scholar
http://www.sierraclub.org/sierra/2015-5-september-october/innovate/how-store-renewable-energy-later#2 [05.10.2018].
Google Scholar
Authors
Aleksander Chudyaleksander.chudy@pollub.edu.pl
Lublin University of Technology Poland
http://orcid.org/0000-0002-3183-8450
Statistics
Abstract views: 289PDF downloads: 184
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Aleksander Chudy, BATTERY SWAPPING STATIONS FOR ELECTRIC VEHICLES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 2 (2021)
- Aleksander Chudy, Henryka Danuta Stryczewska, ELECTROMAGNETIC COMPATIBILITY TESTING OF ELECTRIC VEHICLES AND THEIR CHARGERS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)