OPTIMIZATION OF CONTROLLED EXPLOSION PROCESSES PARAMETERS USING COMPLEX ANALYSIS METHODS
Article Sidebar
Open full text
Issue Vol. 9 No. 1 (2019)
-
EMG FIELD ANALYSIS IN DYNAMIC MICROSCOPIC/NANOSCOPIC MODELS OF MATTER
Pavel Fiala, Karel Bartušek, Jarmila Dědková, Premysl Dohnal4-10
-
SLUG FLOW VELOCITY ESTIMATION DURING PNEUMATIC CONVEYING OF BULK SOLID MATERIALS BASED ON IMAGE PROCESSING TECHNIQUES
Mateusz Miłak, Agnieszka Leszczyńska, Krzysztof Grudzień, Andrzej Romanowski, Dominik Sankowski11-14
-
REVIEW OF MOBILE BANKING SOLUTIONS INCLUDING THE ANALYSIS OF SURVEY PERFORMED AMONG THE INDIVIDUAL USERS
Jolanta Panas, Katarzyna Wilczyńska15-22
-
THE REVIEW OF SELECTED ELECTRICAL ENERGY STORAGE TECHNIQUES
Aleksander Chudy23-28
-
OPTIMIZATION OF CONTROLLED EXPLOSION PROCESSES PARAMETERS USING COMPLEX ANALYSIS METHODS
Andrii Ya. Bomba, Andrii P. Safonyk, Kateryna M. Malash29-32
-
APPLIED QUASIPOTENTIAL METHOD FOR SOLVING THE COEFFICIENT PROBLEMS OF PARAMETER IDENTIFICATION OF ANISOTROPIC MEDIA
Andrii Bomba, Andrii Safonyk, Olha Michuta, Mykhailo Boichura33-36
-
MATHEMATICAL MODELING SINGULARLY PERTURBED PROCESSES OF WATER SOFTENING ON SODIUM-CATIONITE FILTERS
Andrii Safonyk, Ihor Prysiazhniuk, Olena Prysiazhniuk, Oleksandr Naumchuk37-40
-
ALGORITHM OF USER’S PERSONAL DATA PROTECTION AGAINST DATA LEAKS IN WINDOWS 10 OS
Olexander Zadreyko, Olena Trofymenko, Nataliia Loginova41-44
-
STEGANOGRAPHY – THEORY AND PRACTICE
Vladimir Barannik, Bogdan Gorodetsky, Natalia Barannik45-48
-
ELEMENTS EVALUATION OF SOFT-HARDWARE OBJECTS WITH COMPLEX PHYSICAL, INFORMATION STRUCTURES LINKS
Pavel Khusainov49-52
-
ANALYSIS AND CHOICE OF ROUTING PROTOCOLS IN WIRELESS AD HOC NETWORKS BASED ON THE USE THE NEURAL NETWORK
Oleksandr Oksiiuk, Vadym Krotov53-56
-
INCREASING THE SPECIFIC RATE OF CONTINUOUS PHASE MODULATION SIGNALS
Victor Banket, Sergei Manakov57-60
-
OPTICAL SENSOR OF FLAVONOIDS BASED ON LIQUID CRYSTAL
Orest Sushynskyi, Romana Petrina, Zoriana Gubriy, Semen Khomyak, Zinoviy Mykytyuk , Volodymyr Novikov61-64
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
Abstract
The optimal charge power and position necessary for forming the maximum possible size of the crater along with preservation of the integrity of the two nearby objects with the numerical quasiconformal mapping methods with the alternate parameterization of the of the medium and process character are established. Unambiguously the boundaries of crater, pressed and disturbed soil zones are identified and the corresponding field dynamic grid is built. A number of experiments was held on the basis of the developed algorithm and their results were analyzed.
Keywords:
References
Blair D. E.: Inversion theory and conformal mapping, American Mathematical Society, 2000.
Bomba A. Ya., Bulavatskii V. M., Skopetski V. V.: Nonlinear mathematical models of geohydrodynamics processes. Naukova dumka, Kiev 2007.
Bomba A. Ya., Kashtan S. S., Pryhornytskyi D. O., Yaroshchak S. V.: Complex analysis methods. Editorial and Publishing Department of NUWEE, Rivne 2013 (in Ukrainian).
Bomba A. Ya., Malash K. M.: Modeling of the explosion process in an anisotropic medium with quasiconformal mapping methods. Transactions оf Kremenchuk Mykhailo Ostrohradskyi National University, 4th (105th) ed., Kremenchuk, 2017, 28–33.
Bomba A. Ya., Malash K. M.: Modeling of explosive processes in anisotropic media where boundary of the influence region is identified. Mathematical and computer modelling, serie “Technical sciences” 18, 2018, 3–16.
Bomba A. Ya., Sinchuk A. M.: Using quasi-conformal mappings to mathematical modeling of explosion processes. Volynskii matematychnii visnyk, Serie “Applied mathematics” 8, 2011, 32–41.
Bomba A. Ya., Skopetskii V. V., Prigornitskii D. O.: Numerical solution of nonlinear modeling boundary value problems on quasi-conformal mapping under conditions of interaction of gradients of potential and environmental characteristics. Visnyk Kiivskoho Universitetu, serie “Physics and mathematics” 1, 2003, 126–135.
Bulavatskii V. M., Kryvonos Yu. G., Skopetskii V. V.: Nonclassic mathematical models of heat- and mass transfer processes. Naukova Dumka, Kiev 2005.
Bulavatskii V. M., Luchko I A.: Some inverse problems of the pulsed-hydrodynamic theory of explosion on the discharge. Investigations on boundary value problems of hydrodynamics and thermophysics, Kiev 1979, 53–64.
Ilinskii N. B., Potashev A. V.: Explosion Theory boundary problems. Izdatelstvo Kazanskogo universytetu, Kazan 1986.
Korobijchuk V. V., Sobolevs'kyj R. V., Zubchenko A.: Investigation of ways to minimize the cost of drilling and blasting of blocks of decorative stone. Visnyk Zhytomyrs'kogo Derzhavnogo Tehnologichnogo Universytetu, serie “Tehnichal sciences” 4 (39), 2006, 301–308.
Kravets V. G., Korobyichuk V. V., Boiko V. V.: Physical processes of applied geodynamics of an explosion: monograph. ZSTU, Zhytomyr 2015.
Nearling J.: Mathematical tools for physics. Miami 2008.
Prigornitskii D. O.: Modification of the algorithm for numerical solving a class of nonlinear modeling boundary value problems on quasi-conformal mappings in two-coupling deformable media. Volynskii matematychnii visnyk, serie “Applied mathematics” 9, 2002, 60–66.
Vlasov O. E., Smyrnov S. A.: About explosion modelling. Explosion business. 59th ed, Nedra, Moskva 1966, 109–117.
Article Details
Abstract views: 296
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
