OPTIMIZATION OF CONTROLLED EXPLOSION PROCESSES PARAMETERS USING COMPLEX ANALYSIS METHODS


Abstract

The optimal charge power and position necessary for forming the maximum possible size of the crater along with preservation of the integrity of the two nearby objects with the numerical quasiconformal mapping methods with the alternate parameterization of the of the medium and process character are established. Unambiguously the boundaries of crater, pressed and disturbed soil zones are identified and the corresponding field dynamic grid is built. A number of experiments was held on the basis of the developed algorithm and their results were analyzed.


Keywords

explosion processes; mathematical modelling; parameters identification; quasiconformal mappings

Blair D. E.: Inversion theory and conformal mapping, American Mathematical Society, 2000.

Bomba A. Ya., Bulavatskii V. M., Skopetski V. V.: Nonlinear mathematical models of geohydrodynamics processes. Naukova dumka, Kiev 2007.

Bomba A. Ya., Kashtan S. S., Pryhornytskyi D. O., Yaroshchak S. V.: Complex analysis methods. Editorial and Publishing Department of NUWEE, Rivne 2013 (in Ukrainian).

Bomba A. Ya., Malash K. M.: Modeling of the explosion process in an anisotropic medium with quasiconformal mapping methods. Transactions оf Kremenchuk Mykhailo Ostrohradskyi National University, 4th (105th) ed., Kremenchuk, 2017, 28–33.

Bomba A. Ya., Malash K. M.: Modeling of explosive processes in anisotropic media where boundary of the influence region is identified. Mathematical and computer modelling, serie “Technical sciences” 18, 2018, 3–16.

Bomba A. Ya., Sinchuk A. M.: Using quasi-conformal mappings to mathematical modeling of explosion processes. Volynskii matematychnii visnyk, Serie “Applied mathematics” 8, 2011, 32–41.

Bomba A. Ya., Skopetskii V. V., Prigornitskii D. O.: Numerical solution of nonlinear modeling boundary value problems on quasi-conformal mapping under conditions of interaction of gradients of potential and environmental characteristics. Visnyk Kiivskoho Universitetu, serie “Physics and mathematics” 1, 2003, 126–135.

Bulavatskii V. M., Kryvonos Yu. G., Skopetskii V. V.: Nonclassic mathematical models of heat- and mass transfer processes. Naukova Dumka, Kiev 2005.

Bulavatskii V. M., Luchko I A.: Some inverse problems of the pulsed-hydrodynamic theory of explosion on the discharge. Investigations on boundary value problems of hydrodynamics and thermophysics, Kiev 1979, 53–64.

Ilinskii N. B., Potashev A. V.: Explosion Theory boundary problems. Izdatelstvo Kazanskogo universytetu, Kazan 1986.

Korobijchuk V. V., Sobolevs'kyj R. V., Zubchenko A.: Investigation of ways to minimize the cost of drilling and blasting of blocks of decorative stone. Visnyk Zhytomyrs'kogo Derzhavnogo Tehnologichnogo Universytetu, serie “Tehnichal sciences” 4 (39), 2006, 301–308.

Kravets V. G., Korobyichuk V. V., Boiko V. V.: Physical processes of applied geodynamics of an explosion: monograph. ZSTU, Zhytomyr 2015.

Nearling J.: Mathematical tools for physics. Miami 2008.

Prigornitskii D. O.: Modification of the algorithm for numerical solving a class of nonlinear modeling boundary value problems on quasi-conformal mappings in two-coupling deformable media. Volynskii matematychnii visnyk, serie “Applied mathematics” 9, 2002, 60–66.

Vlasov O. E., Smyrnov S. A.: About explosion modelling. Explosion business. 59th ed, Nedra, Moskva 1966, 109–117.

Download

Published : 2019-03-03


Bomba, A. Y., Safonyk, A. P., & Malash, K. M. (2019). OPTIMIZATION OF CONTROLLED EXPLOSION PROCESSES PARAMETERS USING COMPLEX ANALYSIS METHODS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(1), 29-32. https://doi.org/10.5604/01.3001.0013.0893

Andrii Ya. Bomba 
Rivne State Humanitarian University, Mathematics and Informatics Faculty  Ukraine
http://orcid.org/0000-0001-5528-4192
Andrii P. Safonyk  safonik@ukr.net
National University of Water and Environmental Engineering, Institute of Automation, Cybernetics and Computer Engineering  Ukraine
http://orcid.org/0000-0002-5020-9051
Kateryna M. Malash 
Rivne State Humanitarian University, Mathematics and Informatics Faculty  Ukraine
http://orcid.org/0000-0003-4771-9349