SINGULAR INTEGRATION IN BOUNDARY ELEMENT METHOD FOR HELMHOLTZ EQUATION FORMULATED IN FREQUENCY DOMAIN

Tomasz Rymarczyk


1Research & Development Centre Netrix S.A., Lublin, Poland, 2University of Economics and Innovation in Lublin, Faculty of Transport and Informatics, Lublin, Poland (Poland)
http://orcid.org/0000-0002-3524-9151

Jan Sikora

sik59@wp.pl
1Research & Development Centre Netrix S.A., Lublin, Poland, 2University of Economics and Innovation in Lublin, Faculty of Transport and Informatics, Lublin, Poland (Poland)
http://orcid.org/0000-0002-9492-5818

Abstract

Two ways of approximation of the BEM kernel singularity are presented in this paper. Based on these approximations extensive error analysis was carried on. As a criterion the preciseness and simplicity of approximation were selected. Simplicity because such approach would be applied for the tomography problems, so time of execution plays particularly significant role. One of the approximations which could be applied for the wide range of the arguments of the kernel were selected.


Keywords:

partial differential equations, numerical analysis, function approximation, integral equations

Abramowitz M., Stegun I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. John Wiley, New York 1973.
  Google Scholar

Arridge S. R.: Optical tomography in medical imaging. Inverse Problems 15(2), 1999, R41–R93.
DOI: https://doi.org/10.1088/0266-5611/15/2/022   Google Scholar

Becker A. A.: The boundary Element Method in Engineering. A complete course. McGraw-Hill Book Company, 1992.
  Google Scholar

Harrison J.: Fast and Accurate Bessel Function Computation. [https://www.cl.cam.ac.uk/~jrh13/papers/bessel.pdf] (last access 20.07.2021).
  Google Scholar

Jackson J. D.: Classical Electrodynamics (3rd ed.). Wiley, New York 1999.
DOI: https://doi.org/10.1119/1.19136   Google Scholar

Jabłoński P.: Metoda Elementów Brzegowych w analizie pola elektroma-gnetycznego. Częstochowa University of Technology, Częstochowa 2003.
DOI: https://doi.org/10.1093/gao/9781884446054.article.T021071   Google Scholar

Kirkup S.: The Boundary Element Method in Acoustics: A Survey. Applied Sciences 9(8), 1642 [http://doi.org/10.3390/app9081642].
DOI: https://doi.org/10.3390/app9081642   Google Scholar

Krawczyk A.: Fundamentals of mathematical electromagnetism. Instytut Naukowo-Badawczy ZTUREK, Warszawa 2001.
  Google Scholar

de Munck J. C., Faes T. J. C., Heethaar R. M.: The boundary element method in the forward and inverse problem of electrical impedance tomography. IEEE Trans Biomed Eng. 47(6), 2000, 792–800 [http://doi.org/10.1109/10.844230].
DOI: https://doi.org/10.1109/10.844230   Google Scholar

Rymarczyk T.: Tomographic Imaging in Environmental, Industrial and Medical Applications. Innovatio Press Publishing Hause, Lublin 2019.
  Google Scholar

Sikora J.: Boundary Element Method for Impedance and Optical Tomography. Warsaw University of Technology Publishing Hause, Warsaw 2007.
  Google Scholar

https://mathworld.wolfram.com/Euler-MascheroniConstant.html (last access 10.07.2021).
  Google Scholar

Download


Published
2021-12-20

Cited by

Rymarczyk, T., & Sikora, J. (2021). SINGULAR INTEGRATION IN BOUNDARY ELEMENT METHOD FOR HELMHOLTZ EQUATION FORMULATED IN FREQUENCY DOMAIN. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(4), 4–8. https://doi.org/10.35784/iapgos.2836

Authors

Tomasz Rymarczyk 

1Research & Development Centre Netrix S.A., Lublin, Poland, 2University of Economics and Innovation in Lublin, Faculty of Transport and Informatics, Lublin, Poland Poland
http://orcid.org/0000-0002-3524-9151

Authors

Jan Sikora 
sik59@wp.pl
1Research & Development Centre Netrix S.A., Lublin, Poland, 2University of Economics and Innovation in Lublin, Faculty of Transport and Informatics, Lublin, Poland Poland
http://orcid.org/0000-0002-9492-5818

Statistics

Abstract views: 296
PDF downloads: 189