SINGULAR INTEGRATION IN BOUNDARY ELEMENT METHOD FOR HELMHOLTZ EQUATION FORMULATED IN FREQUENCY DOMAIN
Article Sidebar
Open full text
Issue Vol. 11 No. 4 (2021)
-
SINGULAR INTEGRATION IN BOUNDARY ELEMENT METHOD FOR HELMHOLTZ EQUATION FORMULATED IN FREQUENCY DOMAIN
Tomasz Rymarczyk, Jan Sikora4-8
-
APPLICATION OF THE THREAT INTELLIGENCE PLATFORM TO INCREASE THE SECURITY OF GOVERNMENT INFORMATION RESOURCES
Bohdan Nikolaienko, Serhii Vasylenko9-13
-
INDIRECT INFORMATION HIDING TECHNOLOGY ON A MULTIADIC BASIS
Volodymyr Barannik, Natalia Barannik, Oleksandr Slobodyanyuk14-17
-
SELECTED APPLICATIONS OF DEEP NEURAL NETWORKS IN SKIN LESION DIAGNOSTIC
Magdalena Michalska18-21
-
EFFICIENT LINE DETECTION METHOD BASED ON 2D CONVOLUTION FILTER
Paweł Kowalski, Piotr Tojza22-27
-
FACTOR ANALYSIS METHOD APPLICATION FOR CONSTRUCTING OBJECTIVE FUNCTIONS OF OPTIMIZATION IN MULTIMODAL TRANSPORT PROBLEMS
Serhii Zabolotnii, Artem Honcharov, Sergii Mogilei28-31
-
QUALITY OF SATELLITE COMMUNICATION IN SELECTED MOBILE ANDROID SMARTPHONES
Przemysław Falkowski-Gilski32-37
-
CHROMATIC DISPERSION COMPENSATION IN EXISTING FIBER OPTIC TELECOMMUNICATION LINES WITH THE GROWING BIT RATES NEEDS OF DWDM SYSTEM
Tomasz Bobruk38-41
-
FIBRE OPTIC BRAGG STRUCTURES WITH MONOTONIC APODISATION CHARACTERISTICS
Jacek Klimek42-46
-
ON THE CAPACITY OF SOLAR CELLS UNDER PARTIAL SHADING CONDITIONS
Mateusz Bartczak47-50
-
CONTROLLING A FOUR-WIRE THREE-LEVEL AC/DC CONVERTER WITH INDEPENDENT POWER CONTROL IN EVERY PHASE
Bartłomiej Stefańczak51-54
-
METHOD OF MEASUREMENT AND REDUCTION OF THE ELECTROMAGNETIC DISTURBANCES INDUCTED BY SWITCHING SURGES IN LV CIRCUITS
Patryk Wąsik55-61
-
INCREASING THE COST-EFFECTIVENESS OF IN VITRO RESEARCH THROUGH THE USE OF TITANIUM IN THE DEVICE FOR MEASURING THE ELECTRICAL PARAMETERS OF CELLS
Dawid Zarzeczny62-66
-
ELLIPSOMETRY BASED SPECTROSCOPIC COMPLEX FOR RAPID ASSESSMENT OF THE Bi2Te3-xSex THIN FILMS COMPOSITION
Vladimir Kovalev, Saygid Uvaysov, Marcin Bogucki67-74
-
APPLICATION OF LOW-COST PARTICULATE MATTER SENSORS FOR MEASUREMENT OF POLLUTANTS GENERATED DURING 3D PRINTING
Jarosław Tatarczak75-77
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Abstract
Two ways of approximation of the BEM kernel singularity are presented in this paper. Based on these approximations extensive error analysis was carried on. As a criterion the preciseness and simplicity of approximation were selected. Simplicity because such approach would be applied for the tomography problems, so time of execution plays particularly significant role. One of the approximations which could be applied for the wide range of the arguments of the kernel were selected.
Keywords:
References
Abramowitz M., Stegun I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. John Wiley, New York 1973.
Arridge S. R.: Optical tomography in medical imaging. Inverse Problems 15(2), 1999, R41–R93. DOI: https://doi.org/10.1088/0266-5611/15/2/022
Becker A. A.: The boundary Element Method in Engineering. A complete course. McGraw-Hill Book Company, 1992.
Harrison J.: Fast and Accurate Bessel Function Computation. [https://www.cl.cam.ac.uk/~jrh13/papers/bessel.pdf] (last access 20.07.2021).
Jackson J. D.: Classical Electrodynamics (3rd ed.). Wiley, New York 1999. DOI: https://doi.org/10.1119/1.19136
Jabłoński P.: Metoda Elementów Brzegowych w analizie pola elektroma-gnetycznego. Częstochowa University of Technology, Częstochowa 2003. DOI: https://doi.org/10.1093/gao/9781884446054.article.T021071
Kirkup S.: The Boundary Element Method in Acoustics: A Survey. Applied Sciences 9(8), 1642 [http://doi.org/10.3390/app9081642]. DOI: https://doi.org/10.3390/app9081642
Krawczyk A.: Fundamentals of mathematical electromagnetism. Instytut Naukowo-Badawczy ZTUREK, Warszawa 2001.
de Munck J. C., Faes T. J. C., Heethaar R. M.: The boundary element method in the forward and inverse problem of electrical impedance tomography. IEEE Trans Biomed Eng. 47(6), 2000, 792–800 [http://doi.org/10.1109/10.844230]. DOI: https://doi.org/10.1109/10.844230
Rymarczyk T.: Tomographic Imaging in Environmental, Industrial and Medical Applications. Innovatio Press Publishing Hause, Lublin 2019.
Sikora J.: Boundary Element Method for Impedance and Optical Tomography. Warsaw University of Technology Publishing Hause, Warsaw 2007.
https://mathworld.wolfram.com/Euler-MascheroniConstant.html (last access 10.07.2021).
Article Details
Abstract views: 664
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
