SYSTEM DECYZYJNY DO PRZEWIDYWANIA CEN AKCJI OPARTY NA SZTUCZNEJ SIECI NEURONOWEJ HOPFIELDA

Michał Paluch

mpaluch@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science (Polska)

Lidia Jackowska-Strumiłło


Jackowska-Strumiłło (Polska)

Abstrakt

Artykuł opisuje nową metodę zastosowania sztucznej sieci neuronowej Hopfielda połączonej z analizą techniczną, fraktalną oraz jednokierunkowymi sztucznymi sieciami neuronowymi do przewidywania przyszłych cen akcji na Giełdzie Papierów Wartościowych. Opisane nowe metody zostały zaimplementowane w systemie ekspertowym, który jest polecany jako kompleksowe narzędzie do badania aktualnych i przyszłych zachowań rynku. Zaprezentowany został również algorytm nauki testowania sztucznych sieci neuronowych, który na końcu wybiera najlepszą z nich.


Słowa kluczowe:

Hybrydowy inteligentny system, sztuczna sieć neuronowa Hopfielda

Bensignor R.: New Concepts in Technical Analysis. Wig-Press, Warszawa 2004.
  Google Scholar

Box G.E.P., Jenkins G.M.: Time Series Analysis. Forecasting and control. Holden-Day Inc., San Francisco, USA, 1976.
  Google Scholar

Brdyś M. A., Borowa A., Idźkowiak P., Brdyś M. T.: Adaptive Prediction of Stock Exchange Indices by State Space Wavelet Networks. Int. J. Appl. Math. Comput. Sci., 19(2)/2009, 337–348. [DOI: 10.1.1.390.8001].
  Google Scholar

Bulkowski T.N.: Formation Analysis on Stock Charts. Linia, Warszawa 2011.
  Google Scholar

Dębski W.: Financial Market and it mechanisms. PWN, Warszawa 2010.
  Google Scholar

Drabik E.: Applications of game theory to invest in securities. University of Bialystok, Bialystok 2000.
  Google Scholar

Ehlers J.: Fractal Adaptive Moving Average. Technical Analysis of Stock & Commodities, 2005.
  Google Scholar

Ehlers J.: Cybernetics Analysis For Stocks And Futures. John Wiley & Sons, New York 2004.
  Google Scholar

Ehlers J. Using the Fisher Transform. Technical Analysis of Stocks & Commodities, 2002.
  Google Scholar

Gately E.: Neural Networks for Financial Forecasting. New York, Wiley 1995.
  Google Scholar

Güresen E., Kayakutlu G.: Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models. In IFIP International Federation for Information Processing, 288/2008, 129–137.
  Google Scholar

Güresen E., Kayakutlu G., Daim T.U.: Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38/2011, 10389–10397. [DOI: 10.1016/j.eswa.2011.02.068].
  Google Scholar

Jackowska-Strumiłło L.: Hybrid Analytical and ANN-based Modelling of Temperature Sensors Nonlinear Dynamic Properties. Lecture Notes in Artificial Intelligence Part I, Springer-Verlag, 2011, 356–363. [DOI: 10.1007/978-3-642-21219-2_45].
  Google Scholar

Jackowska-Strumiłło L., Jackowski T., Chylewska B., Cyniak D.: Application of hybrid neural model to determination of selected yarn parameters. Fibres & Textiles in Eastern Europe, 6(4)/1998, 27–32.
  Google Scholar

Khashei M., Bijari M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications, 37(1)/2010, 479–489. [DOI: 10.1016/j.eswa.2009.05.044].
  Google Scholar

Majhi R., Panda G., Sahoo G.: Efficient prediction of exchange rates with low complexity artificial neural network models. Expert Systems with Applications, 36/2009, 181–189. [DOI: 10.1016/j.eswa.2007.09.005].
  Google Scholar

Murphy J.J.: Technical Analysis of Financial Markets. Wig-Press, Warszawa 2008.
  Google Scholar

Paluch M., Jackowska-Strumiłło L.: Intelligent Information System For Stock Exchange Data Processing And Presentation. 8th International Conference on Human System Interactions, 2015.
  Google Scholar

Paluch M., Jackowska-Strumiłło L.: Prediction of closing prices on the Stock Exchange with the use of artificial neural networks. Image Processing & Communication, 17(4)/2012, 275–282.
  Google Scholar

Paluch M., Jackowska-Strumiłło L.: The influence of using fractal analysis in hybrid MLP model for short-term forecast of close prices on Warsaw Stock Exchange. Proc. Federated Conference on Computer Science and Information Systems 2014, FedCSIS 2014, 7–10 Sep. 2014, Warsaw, Poland, 111–118.
  Google Scholar

Paluch M., Jackowska-Strumiłło L.: Intelligent Information System For Stock Exchange Data Processing And Presentation. 8th International Conference on Human System Interactions, IEEExplore, 2015.
  Google Scholar

Rutkowski L.: Methods and Techniques of Artificial Intelligence. PWN, Warszawa 2009.
  Google Scholar

Sutheebanjard P., Premchaiswadi W.: Stock Exchange of Thailand Index Prediction Using Back Propagation Neural Networks. Proc. of the Second International Conference on Computer and Network Technology (ICCNT), 2010, Bangkok, 377–380. [DOI: 10.1109/ICCNT.2010.21].
  Google Scholar

Tadeusiewicz R.: Discovering Neural Networks, Kraków 2007.
  Google Scholar

Tilakaratne C.D., Morris S.A., Mammadov M.A., Hurst C.P.: Predicting Stock Market Index Trading Signals Using Neural Networks. Proc. of the 14th Annual Global Finance Conference (GFC 2007), Melbourne, Australia, 2007, 171–179.
  Google Scholar

Walls C.: Spring in Action, Helion, Gliwice.
  Google Scholar

Witkowska D., Marcinkiewicz E.: Construction and Evaluation of Trading Systems: Warsaw Index Futures. International Advances in Economic Research, 11/2005, 83–92. [DOI: 10.1007/s11294-004-7496-7].
  Google Scholar

Zieliński J.: Intelligent management systems – theory and practice. Warszawa 2000.
  Google Scholar


Opublikowane
2016-05-10

Cited By / Share

Paluch, M., & Jackowska-Strumiłło, L. (2016). SYSTEM DECYZYJNY DO PRZEWIDYWANIA CEN AKCJI OPARTY NA SZTUCZNEJ SIECI NEURONOWEJ HOPFIELDA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 6(2), 28–33. https://doi.org/10.5604/20830157.1201313

Autorzy

Michał Paluch 
mpaluch@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science Polska

Autorzy

Lidia Jackowska-Strumiłło 

Jackowska-Strumiłło Polska

Statystyki

Abstract views: 268
PDF downloads: 112