PARAMETRIC METHODS FOR ECT INVERSE PROBLEM SOLUTION IN SOLID FLOW MONITORING


Abstract

The article presents the parametrisation-based methods of monitoring of the process of gravitational silo discharging with aid of capacitance tomography techniques. Proposed methods cover probabilistic Bayes’ modelling, including spatial and temporal analysis and Markov chain Monte Carlo methods as well as process parametrisation with artificial neural networks. In contrast to classical image reconstruction-based methods, parametric modelling allows to omit this stage as well as abandon the associated reconstruction errors. Parametric modelling enables the direct analysis of significant parameters of investigated process that in turn results in easier incorporation into the control feedback loop. Presented examples are given for the gravitational flow of bulk solids in silos.


Keywords

electrical capacitance tomography; tomography image processing; gravitational flow; granular material

Banasiak R., Wajman R., Jaworski T., Fiderek P., Fidos H., Nowakowski J., Sankowski D.: Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. International Journal of Multiphase Flow, 58/2014, 1–14.

Buick J.M., Chavez-Sagarnaga J., Zhing Z., Ooi J.Y., Pankaj D.M., Cambell D.M., Greated C.A.: Investigation of silo-honking: slip-stick excitation and wall vibration. Journal of Engineering Mechanics ASCE, 131(3)/2005, 299–307.

Chaniecki Z., Dyakowski T., Niedostatkiewicz M., Sankowski D.: Application of electrical capacitance tomography for bulk solids flow analysis in silos. Particle and Particle Systems Characterization, 23(3-4)/2006, 306–312.

Dhoriyani M.L., Jonnalagadda K.K., Kandikatla R.K., Rao K.K.: Silo music: sound emission during the flow of granular materials through tubes. Powder Technology, 167/2006, 55–71.

Dyakowski T., Edwards R.B., Xie C.G., Williams RA.: Application of capacitance tomography to gas-solid flows. Chemical Engineering Science, 52/1997, 2099–2110.

Garbaa H., Jaksowska-Strumiłło L., Grudzień K., Romanowski A.: Neural network approach to ECT Inverse problem solving for estimation of gravitational solids flow, Proceedings of the Federated Conference, Computer Science and Information Systems, 2014, 19–26.

Grudzień K., Romanowski A., and Williams RA.: Application of a Bayesian Approach to the Tomographic Analysis of Hopper Flow. Particle & Particle Systems Characterization, 22/2006, 246–253.

Grudzień K., Chaniecki Z., Romanowski A., Niedostatkiewicz M., Sankowski D.: Image Analysis Methods for Shear Zone Measurements during Silo Discharging Process. Chinese Journal of Chemical Engineering, 22/2012, 337–345.

Grudzień K., Romanowski A., Aykroyd RG., Williams RA.: Advanced statistical computing for capacitance tomography as a monitoring and control tool. Intelligent Systems Design and Applications, 2005, 49–54.

Grudzień K., Romanowski A., Aykroyd R.G., Williams R.A., Mosorov V.: Parametric Modelling Algorithms in Electrical Capacitance Tomography for Multiphase Flow Monitoring, Perspective Technologies and Methods in MEMS Design. Proceedings of the 2nd International Conference on, 2006, 100–106.

Haykin S.: Neural Networks: a comprehensive foundation – 2nd ed. Prentice Hall, 1999.

Isaksen Ø., Nordtvedt J.E.: A new reconstruction algorithm for use with capacitance-based tomography. Modeling, Identification and Control, 15/1994, 9–21.

Lionheart W.R.B.: Review: Developments in EIT reconstruction algorithms: pitfalls, challenges and recent development. Physiol. Meas., 25/2004, 125–142.

McCormick Sf., Wade J.G.: Multigrid solution of a linearized, regularized least-squares problem in electrical impedance tomography. Inverse Problems, 9/1993, 697.

Mosorov V.: Flow Pattern Tracing for Mass Flow Rate Measurement in Pneumatic Conveying Using Twin Plane Electrical Capacitance Tomography. Particle & Particle Systems Characterization, 25(3)/2008, 259–265.

Muite B.K., Quinn F.S., Sundaresan S., Rao K.K.: Silo music and silo quake: granular flow-induced vibration. Powder Technology, 145/2004, 190–202.

Niedostatkiewicz M., Tejchman J.: Experimental and theoretical studies on resonance dynamic effects during silo flow. Powder Handling and Processing, 15(1)/2003, 36–42.

Pląskowski A., Beck M.S., Thorn R., Dyakowski T.: Imaging industrial flows, applications of electrical process tomography. Institute of Physics Publishing, Bristol, 1995, 214.

Romanowski A., Grudzień K., Williams R.A.: Analysis and Interpretation of Hopper Flow Behaviour Using Electrical Capacitance Tomography. Particle & Particle Systems Characterization, 23/2006, 297–305.

Romanowski A., Grudzień K., Chaniecki Z., Woźniak P.: Contextual processing of ECT measurement information towards detection of process emergency states. Thirteenth International Conference on Hybdrid Intelligent Systems (HIS 2013), 2013, 292–298.

Rymarczyk T., Filipowicz S.F., Sikora J.: Comparing methods of image reconstruction in electrical impedance tomography. Computer Applications In Electrical Engineering, 9/2011, 23–33.

Sankowski D., Sikora J.: Electrical Capacitance Tomography: Theoretical Basis and Applications, edited by Dominik Sankowski and Jan Sikora, Wydawnictwa Książkowe Instytutu Elektrotechniki, 2010.

Schulze D.: Powders and Bulk Solids, Springer, 2008, 516.

Scott D.M., McCann H.: Process Imaging for automatic control, Taylor and Francis Group, 2005.

Seville J.P.K., Tuzun U., Clift R.: Processing of Particulate Solids, Blackie Academic, London, 1997.

Stasiak M., Sikora J., Filipowicz S.F., Nita K.: Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method. Engineering Analyses with Boundary Elements, 31/2007, 713–720.

Vauhkonen M., Vadasz D., Karjalainen P.A., Somersalo E., Kaipio J.P.: Tikhonov regularization and prior information in electrical impedance tomography. Medical Imaging, IEEE Transactions on, 17/1998, 285–293.

West R.M, Jia X, Williams R.A.: Parametric modeling in industrial process tomography. Chemical Engineering Journal, 77/2000, 31–36.

West R.M., Meng S., Aykroyd R.G., Williams R.A.: Spatial-temporal modeling for electrical impedance imaging of a mixing process. Rev. Sci. Instrum. 76/2005, 073703.

Winkler G.: Image Analysis, Random Fields and Markov Chain Monte Carlo: A Mathematical Introduction (2nd Ed.). Berlin, Heidelberg: Springer-Verlag., 2003.

Yang W.Q., Liu S.: Role of tomography in gas/solids flow measurement. Flow Meas. and Instrum., 11/2000, 237–244.

Yang W.Q., Peng L.: Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 14/2003, R1–R13.

Download

Published : 2017-03-03


Romanowski, A., Grudzień, K., Garbaa, H., & Jackowska-Strumiłło, L. (2017). PARAMETRIC METHODS FOR ECT INVERSE PROBLEM SOLUTION IN SOLID FLOW MONITORING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(1), 50-54. https://doi.org/10.5604/01.3001.0010.4582

Andrzej Romanowski  androm@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science  Poland
Krzysztof Grudzień 
Lodz University of Technology, Institute of Applied Computer Science  Poland
Hela Garbaa 
Lodz University of Technology, Institute of Applied Computer Science  Poland
Lidia Jackowska-Strumiłło 
Lodz University of Technology, Institute of Applied Computer Science  Poland