METODY PARAMETRYCZNE W ROZWIĄZYWANIU PROBLEMU ODWROTNEGO DLA MONITOROWANIA PRZEPŁYWÓW MATERIAŁÓW SYPKICH

Andrzej Romanowski

androm@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science (Polska)

Krzysztof Grudzień


Lodz University of Technology, Institute of Applied Computer Science (Polska)

Hela Garbaa


Lodz University of Technology, Institute of Applied Computer Science (Polska)

Lidia Jackowska-Strumiłło


Lodz University of Technology, Institute of Applied Computer Science (Polska)

Abstrakt

Niniejszy artykuł przedstawia parametryczne metody rozwiązywania problemu odwrotnego w tomografii pojemnościowej na przykładzie monitorowania procesu przepływu materiałów sypkich przy użyciu tomografii pojemnościowej. Wybrane metody obejmują modelowanie probabilistyczne Bayesa, w tym przestrzenne i czasowe oraz metody Monte Carlo łańcuchów Markowa, a także parametryzację procesu z użyciem sztucznych sieci neuronowych. W odróżnieniu od klasycznych metod opartych na algorytmach rekonstrukcji obrazu parametryzacja pozwala na pominięcie tego etapu, a co za tym idzie brak dodatkowych błędów związanych z rekonstrukcją. Parametryzacja pozwala na bezpośrednią analizę istotnych parametrów badanego procesu, przez co łatwiejsze jest użycie tych wyników w pętli sprzężenia zwrotnego sterowania. Przykłady rozpatrywane w tekście są opisane dla procesu grawitacyjnego opróżniania materiałów sypkich przechowywanych w silosach.


Słowa kluczowe:

elektryczna tomografia pojemnościowa, przetwarzanie obrazów tomograficznych, przepływ grawitacyjny, materiał sypki

Banasiak R., Wajman R., Jaworski T., Fiderek P., Fidos H., Nowakowski J., Sankowski D.: Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. International Journal of Multiphase Flow, 58/2014, 1–14.
  Google Scholar

Buick J.M., Chavez-Sagarnaga J., Zhing Z., Ooi J.Y., Pankaj D.M., Cambell D.M., Greated C.A.: Investigation of silo-honking: slip-stick excitation and wall vibration. Journal of Engineering Mechanics ASCE, 131(3)/2005, 299–307.
  Google Scholar

Chaniecki Z., Dyakowski T., Niedostatkiewicz M., Sankowski D.: Application of electrical capacitance tomography for bulk solids flow analysis in silos. Particle and Particle Systems Characterization, 23(3-4)/2006, 306–312.
  Google Scholar

Dhoriyani M.L., Jonnalagadda K.K., Kandikatla R.K., Rao K.K.: Silo music: sound emission during the flow of granular materials through tubes. Powder Technology, 167/2006, 55–71.
  Google Scholar

Dyakowski T., Edwards R.B., Xie C.G., Williams RA.: Application of capacitance tomography to gas-solid flows. Chemical Engineering Science, 52/1997, 2099–2110.
  Google Scholar

Garbaa H., Jaksowska-Strumiłło L., Grudzień K., Romanowski A.: Neural network approach to ECT Inverse problem solving for estimation of gravitational solids flow, Proceedings of the Federated Conference, Computer Science and Information Systems, 2014, 19–26.
  Google Scholar

Grudzień K., Romanowski A., and Williams RA.: Application of a Bayesian Approach to the Tomographic Analysis of Hopper Flow. Particle & Particle Systems Characterization, 22/2006, 246–253.
  Google Scholar

Grudzień K., Chaniecki Z., Romanowski A., Niedostatkiewicz M., Sankowski D.: Image Analysis Methods for Shear Zone Measurements during Silo Discharging Process. Chinese Journal of Chemical Engineering, 22/2012, 337–345.
  Google Scholar

Grudzień K., Romanowski A., Aykroyd RG., Williams RA.: Advanced statistical computing for capacitance tomography as a monitoring and control tool. Intelligent Systems Design and Applications, 2005, 49–54.
  Google Scholar

Grudzień K., Romanowski A., Aykroyd R.G., Williams R.A., Mosorov V.: Parametric Modelling Algorithms in Electrical Capacitance Tomography for Multiphase Flow Monitoring, Perspective Technologies and Methods in MEMS Design. Proceedings of the 2nd International Conference on, 2006, 100–106.
  Google Scholar

Haykin S.: Neural Networks: a comprehensive foundation – 2nd ed. Prentice Hall, 1999.
  Google Scholar

Isaksen Ø., Nordtvedt J.E.: A new reconstruction algorithm for use with capacitance-based tomography. Modeling, Identification and Control, 15/1994, 9–21.
  Google Scholar

Lionheart W.R.B.: Review: Developments in EIT reconstruction algorithms: pitfalls, challenges and recent development. Physiol. Meas., 25/2004, 125–142.
  Google Scholar

McCormick Sf., Wade J.G.: Multigrid solution of a linearized, regularized least-squares problem in electrical impedance tomography. Inverse Problems, 9/1993, 697.
  Google Scholar

Mosorov V.: Flow Pattern Tracing for Mass Flow Rate Measurement in Pneumatic Conveying Using Twin Plane Electrical Capacitance Tomography. Particle & Particle Systems Characterization, 25(3)/2008, 259–265.
  Google Scholar

Muite B.K., Quinn F.S., Sundaresan S., Rao K.K.: Silo music and silo quake: granular flow-induced vibration. Powder Technology, 145/2004, 190–202.
  Google Scholar

Niedostatkiewicz M., Tejchman J.: Experimental and theoretical studies on resonance dynamic effects during silo flow. Powder Handling and Processing, 15(1)/2003, 36–42.
  Google Scholar

Pląskowski A., Beck M.S., Thorn R., Dyakowski T.: Imaging industrial flows, applications of electrical process tomography. Institute of Physics Publishing, Bristol, 1995, 214.
  Google Scholar

Romanowski A., Grudzień K., Williams R.A.: Analysis and Interpretation of Hopper Flow Behaviour Using Electrical Capacitance Tomography. Particle & Particle Systems Characterization, 23/2006, 297–305.
  Google Scholar

Romanowski A., Grudzień K., Chaniecki Z., Woźniak P.: Contextual processing of ECT measurement information towards detection of process emergency states. Thirteenth International Conference on Hybdrid Intelligent Systems (HIS 2013), 2013, 292–298.
  Google Scholar

Rymarczyk T., Filipowicz S.F., Sikora J.: Comparing methods of image reconstruction in electrical impedance tomography. Computer Applications In Electrical Engineering, 9/2011, 23–33.
  Google Scholar

Sankowski D., Sikora J.: Electrical Capacitance Tomography: Theoretical Basis and Applications, edited by Dominik Sankowski and Jan Sikora, Wydawnictwa Książkowe Instytutu Elektrotechniki, 2010.
  Google Scholar

Schulze D.: Powders and Bulk Solids, Springer, 2008, 516.
  Google Scholar

Scott D.M., McCann H.: Process Imaging for automatic control, Taylor and Francis Group, 2005.
  Google Scholar

Seville J.P.K., Tuzun U., Clift R.: Processing of Particulate Solids, Blackie Academic, London, 1997.
  Google Scholar

Stasiak M., Sikora J., Filipowicz S.F., Nita K.: Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method. Engineering Analyses with Boundary Elements, 31/2007, 713–720.
  Google Scholar

Vauhkonen M., Vadasz D., Karjalainen P.A., Somersalo E., Kaipio J.P.: Tikhonov regularization and prior information in electrical impedance tomography. Medical Imaging, IEEE Transactions on, 17/1998, 285–293.
  Google Scholar

West R.M, Jia X, Williams R.A.: Parametric modeling in industrial process tomography. Chemical Engineering Journal, 77/2000, 31–36.
  Google Scholar

West R.M., Meng S., Aykroyd R.G., Williams R.A.: Spatial-temporal modeling for electrical impedance imaging of a mixing process. Rev. Sci. Instrum. 76/2005, 073703.
  Google Scholar

Winkler G.: Image Analysis, Random Fields and Markov Chain Monte Carlo: A Mathematical Introduction (2nd Ed.). Berlin, Heidelberg: Springer-Verlag., 2003.
  Google Scholar

Yang W.Q., Liu S.: Role of tomography in gas/solids flow measurement. Flow Meas. and Instrum., 11/2000, 237–244.
  Google Scholar

Yang W.Q., Peng L.: Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 14/2003, R1–R13.
  Google Scholar


Opublikowane
2017-03-03

Cited By / Share

Romanowski, A. ., Grudzień, K. ., Garbaa, H. ., & Jackowska-Strumiłło, L. (2017). METODY PARAMETRYCZNE W ROZWIĄZYWANIU PROBLEMU ODWROTNEGO DLA MONITOROWANIA PRZEPŁYWÓW MATERIAŁÓW SYPKICH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(1), 50–54. https://doi.org/10.5604/01.3001.0010.4582

Autorzy

Andrzej Romanowski 
androm@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science Polska

Autorzy

Krzysztof Grudzień 

Lodz University of Technology, Institute of Applied Computer Science Polska

Autorzy

Hela Garbaa 

Lodz University of Technology, Institute of Applied Computer Science Polska

Autorzy

Lidia Jackowska-Strumiłło 

Lodz University of Technology, Institute of Applied Computer Science Polska

Statystyki

Abstract views: 219
PDF downloads: 63


Inne teksty tego samego autora