ROZPOZNAWANIE EMOCJI W TEKSTACH POLSKOJĘZYCZNYCH Z WYKORZYSTANIEM METODY SŁÓW KLUCZOWYCH

Adrian Maciej Nowaczyk

amnowaczyk@gmail.com
Politechnika Łódzka, Instytut Informatyki Stosowanej (Polska)

Lidia Jackowska-Strumiłło


Politechnika Łódzka, Instytut Informatyki Stosowanej (Polska)

Abstrakt

Dynamiczny rozwój sieci społecznościowych sprawił, że Internet stał się najpopularniejszym medium komunikacyjnym. Zdecydowana większość komunikatów wymieniana jest w postaci widomości tekstowych, które niejednokrotnie odzwierciedlają stan emocjonalny autora. Identyfikacja emocji w tekstach znajduje szerokie zastosowanie w handlu elektronicznym, czy telemedycynie, stając się jednocześnie ważnym elementem w komunikacji człowiek-komputer. W niniejszym artykule zaprezentowano metodę rozpoznawania emocji w tekstach polskojęzycznych opartą o algorytm detekcji słów kluczowych i lematyzację. Uzyskano dokładność rzędu 60%. Opracowano również pierwszą polskojęzyczną bazę słów kluczowych wyrażających emocje.


Słowa kluczowe:

rozpoznawanie emocji, interakcja człowiek-komputer, przetwarzanie języka naturalnego, przetwarzanie tekstów

Binali H., Wu C., Potdar V.: Computational approaches for emotion detection in text, 4th IEEE International Conference on Digital Ecosystems and Technologies, Dubai, 2010, 172–177 [DOI:10.1109/DEST.2010.5610650].
  Google Scholar

Buckland M., Gey F.: The Relationship between Recall and Precision. Journal of The American Society For Information Science 45(1)/1994, 12–19 [DOI:10.1002/(SICI)1097-4571(199401)45:1<12::AID–ASI2>3.0.CO;2-L].
  Google Scholar

Dung T., Cao T.H.: A high-order hidden Markov model for emotion detection from textual data. Lecture Notes in Computer Science 7457/2012, 94–105.
  Google Scholar

Ekman P.: Basic emotions. The handbook of cognition and emotion. John Wiley & Sons, New York 1999.
  Google Scholar

Elliott C.: The affective reasoned: a process model of emotions in a multi-agent system. Doctoral thesis on Northwestern University, 1992.
  Google Scholar

Fellbaum C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge 1998.
  Google Scholar

Ghazi D., Inkpen D., Szpakowicz S.: Hierarchical versus flat classification of emotions in text. NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion Computational Linguistics, 2010, 40–146.
  Google Scholar

Hancock J., Landrigan C., Silver C.: Expressing emotion in text-based communication. Proceedings of the SIGCHI conference on Human factors in computing systems, 2007, 929–932.
  Google Scholar

Kamińska D., Pelikant A.: Recognition of Human Emotion from a Speech Signal Based on Plutchik’s Model. International Journal of Electronics and Telecommunications 58(2)/(2012), 165–170[DOI:10.2478/v10177-012-0024-4].
  Google Scholar

Khalili Z., Moradi M.H.: Emotion recognition system using brain and peripheral signals: using correlation dimension to improve the results of EEG. Proceedings of the International Joint Conference on Neural Networks 2009, 1571–1575.
  Google Scholar

Ling H., Bali R., Salam R.: Emotion detection using keywords spotting and semantic network. Proceedings of the International Conference on Computing & Informatics 2006, 1-5 [DOI:10.1109/ICOCI.2006.5276495].
  Google Scholar

Lu Ch., Lin S., Liu J., Cruz-Lara S., Hong J.: Automatic event-level textual emotion sensing using mutual action histogram between entities. Expert systems with applications 37(2)/2010, 1643–1653[DOI:10.1016/j.eswa.2009.06.099].
  Google Scholar

Maziarz M., Piasecki M., Szpakowicz S.: Approaching plWordNet 2.0. Proceedings of the 6th Global Wordnet Conference, 2012.
  Google Scholar

Plutchik R.: The nature of emotion. American Scientist 89(4)/2001, 344.
  Google Scholar

Schachter S., Singer J.: Cognitive, Social, and Physiological Determinants of Emotional State. Psychological Review 69/1962, 379–399 [DOI:10.1037/h0046234].
  Google Scholar

Stathopoulou I-O., Tsihrintzis G.: Emotion Recognition from Body Movements and Gesture. Proceedings of the International Conference on Intelligent Interactive Multimedia Systems and Services, 2011, 295–303.
  Google Scholar

Strapparava C., Valitutti A.: WordNet Affect: an Affective Extension of WordNet. Proceedings of International Conference on Language Resources and Evaluation, 2004, 1083–1086.
  Google Scholar

Ślot K., Bronakowski Ł., Cichosz J.: Application of voiced-speech variability descriptors to emotion recognition. Computational Intelligence for Security and Defense Applications, 2009, 1–5 [DOI:10.1109/CISDA.2009.5356537].
  Google Scholar

Teng Z., Ren F., Kuroiwa S.: Recognition of Emotion with SVM. Artificial Intelligence 4114/2006, 701–710 [DOI:10.1007/11816171_87].
  Google Scholar

Zheng W., Tang H., Lin Z., Huang T.: Emotion Recognition from Arbitrary View Facial Images. Proceedings of the 11th European Conference on Computer Vision, 2010, 490–503 [DOI:10.1007/978-3-642-15567-3_36].
  Google Scholar

https://commons.wikimedia.org/wiki/File:Emotions_-_3.png [10.03.2016].
  Google Scholar

Pobierz


Opublikowane
2017-06-30

Cited By / Share

Nowaczyk, A. M., & Jackowska-Strumiłło, L. (2017). ROZPOZNAWANIE EMOCJI W TEKSTACH POLSKOJĘZYCZNYCH Z WYKORZYSTANIEM METODY SŁÓW KLUCZOWYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(2), 102–105. https://doi.org/10.5604/01.3001.0010.4849

Autorzy

Adrian Maciej Nowaczyk 
amnowaczyk@gmail.com
Politechnika Łódzka, Instytut Informatyki Stosowanej Polska

Autorzy

Lidia Jackowska-Strumiłło 

Politechnika Łódzka, Instytut Informatyki Stosowanej Polska

Statystyki

Abstract views: 469
PDF downloads: 8729