ODDZIAŁYWANIE POLA MAGNETYCZNEGO NA PŁYNĄCĄ CIECZ O WYBRANYCH WŁAŚCIWOŚCIACH MAGNETYCZNYCH

Mateusz Krawczyk


AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej, Katedra Elektrotechniki i Elektroenergetyki (Polska)

Mikołaj Skowron

mskowron@agh.edu.pl
AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej, Katedra Elektrotechniki i Elektroenergetyki (Polska)

Abstrakt

W artykule przedstawiono wyniki badań oddziaływania pola magnetycznego na płynącą ciecz o właściwościach paramagnetycznych. W obszarze działania stałego w czasie pola magnetycznego indukują się w płynącej cieczy prądy wirowe. Indukowane prądy wpływają na rozkład pola magnetycznego w obszarze w którym przepływa ciecz. Wzajemne oddziaływanie indukowanych prądów i pola magnetycznego wpływa na zmiany kierunku ruchu cieczy oraz zmiany ciśnienia w cieczy. W artykule zaprezentowano wyniki obliczeń rozkładu pola magnetycznego, zmiany kierunku prędkości w przepływającej cieczy, a także zmiany ciśnienia w modelowanej cieczy. Obliczenia wykonano w programie Comsol Multiphysics.


Słowa kluczowe:

pole magnetyczne, ciecz paramagnetyczna, prądy wirowe

Alexiou Ch., Arnold W., Klein R. J., et al.: Locoregional Cancer Treatment with Magnetic Drug Targeting Cancer Research 60, 2000, p. 6641-6648.
  Google Scholar

AvilésaM, Chenb H, Ebner A., et al.: In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting, Journal of Magnetism and Magnetic Materials, Volume 311, Issue 1, 2007, p. 306–311.
  Google Scholar

Chen H, Ebner A., Bockenfeld D., et al.: A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification, Physics in Medicine And Biology 52, 2007, p. 6053–6072.
  Google Scholar

Cieśla A.: Field distribution in separator's working space for various winding configuration, Przegląd Elektrotechniczny, 87 nr 7, 2011, s. 99–103.
  Google Scholar

Cieśla A.: Magnetic separation of kaolin clay using free helium superconducting magnet, Przegląd Elektrotechniczny, 88 nr 12b, 2012, s. 50–53.
  Google Scholar

Cieśla A.: Superconducting magnet of free helium type used for the filtration in environmental processing, Przegląd Elektrotechniczny, 86, nr 5, 2010, s. 181–184.
  Google Scholar

Furlani E P.: Magnetophoretic separation of blood cells at the microscale, Journal of Physics D: Applied Physics 40, 2007, p. 1313–1319.
  Google Scholar

Ganguly R., Gaind A., et al.: Analyzing ferrofluid transport for magnetic drug targeting Journal of Magnetism and Magnetic Materials 289, 2005, p. 331–334.
  Google Scholar

Haverkort J. W., Kenjeres S., Kleijn C. R.: Computational Simulations of Magnetic Particle Capture in Arterial Flows, Annals of Biomedical Engineering 2009.
  Google Scholar

Haverkort J. W., Kenjereš S., Kleijn C. R.: Magnetic particle motion in a Poiseuille flow Physical Review E 80, 016302, 2009.
  Google Scholar

Johannsen M., Thiesen B, Jordan A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model The Prostate 64, 3, 2005, p. 283–292.
  Google Scholar

Kakihara Y., Fukunishi T., Takeda S., Nishijima S., Nakahira A.: Superconducting high gradient magnetic separation for purification of wastewater from paper factory Applied Superconductivity, IEEE Transactions on 14, Issue: 2, 2004, p. 1565 – 1567.
  Google Scholar

Laurent S., Dutz S., Häfeli U., Mahmoudi M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles Advances in Colloid and Interface Science Volume 166, Issues 1–2, 2011, p. 8–23.
  Google Scholar

Lübbe A.S. et al.: Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy Cancer Research 56, 1996, p. 4694-4701.
  Google Scholar

Nishijima S., Takeda S., Mishima F., et al.: A Study of Magnetic Drug Delivery System Using Bulk High Temperature Superconducting Magnet IEEE Transactions on applied superconductivity, vol. 18, no. 2, 2008.
  Google Scholar

Odenbach S.: Recent progress in magnetic fluid research, Journal Of Physics: Condensed Matter 16, 2004, p. 1135–1150.
  Google Scholar

Pamme N.: Continuous flow separations in microfluidic devices Lab Chip, 2007, 7, p. 1644–1659.
  Google Scholar

Pamme N.: Magnetism and microfluidics Lab Chip, 2006, 6, p. 24–38.
  Google Scholar

Skowron M.: Modelowanie i analiza pola magnetycznego w nietypowych układach współrzędnych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 1, 2013, s. 47–48.
  Google Scholar

Tartaj P., Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T. Serna C. J.: The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics 36, 2003, p. 182–197.
  Google Scholar

Vander Sloten J., Verdonck P., Nyssen M., Haueisen J.: Optimizing drug delivery using non-uniform magnetic fields: a numerical study ECIFMBE 2008, IFMBE Proceedings 22, 2008, p. 2623–2627.
  Google Scholar

Pobierz


Opublikowane
2014-06-18

Cited By / Share

Krawczyk, M., & Skowron, M. (2014). ODDZIAŁYWANIE POLA MAGNETYCZNEGO NA PŁYNĄCĄ CIECZ O WYBRANYCH WŁAŚCIWOŚCIACH MAGNETYCZNYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 4(2), 24–27. https://doi.org/10.5604/20830157.1109366

Autorzy

Mateusz Krawczyk 

AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej, Katedra Elektrotechniki i Elektroenergetyki Polska

Autorzy

Mikołaj Skowron 
mskowron@agh.edu.pl
AGH Akademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej, Katedra Elektrotechniki i Elektroenergetyki Polska

Statystyki

Abstract views: 205
PDF downloads: 70