ZASTOSOWANIE TECHNOLOGII INTERFEJSÓW MÓZG-KOMPUTER JAKO KONTROLERA DO GIER WIDEO
Błażej Zając
Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics (Polska)
http://orcid.org/0000-0003-3877-5322
Szczepan Paszkiel
s.paszkiel@po.edu.plOpole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics (Polska)
http://orcid.org/0000-0002-4917-5712
Abstrakt
W obecnych czasach sterowanie w grach wideo jest oparte na wykorzystaniu myszki, klawiatury oraz innych kontrolerów. Brain-Computer Interface w skrócie BCI to specjalny interfejs pozwalający na bezpośrednią komunikację między mózgiem, a odpowiednim urządzeniem zewnętrznym. Technologia Brain-Computer Interface może zostać użyta w celach komercyjnych na przykład jako zamiennik myszki klawiatury lub innego kontrolera. W artykule przedstawiono sposób sterowania w grach wideo przy pomocy neuro-headsetu EMOTIV EPOC+ jako kontrolera.
Słowa kluczowe:
elektroencefalografia, interfejs mózg-komputer, EMOTIV EPOC Neuroheadset, gry videoBibliografia
Acharya U. R., Sree S. V., Swapna G., Martis R. J., Suri J. S.: Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems 45/2013, 147–165.
DOI: https://doi.org/10.1016/j.knosys.2013.02.014
Google Scholar
Al-Fahoum A. S., Al-Fraihat A. A.: Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuroscience 2014, 1–7.
DOI: https://doi.org/10.1155/2014/730218
Google Scholar
Amin H. U., Mumtaz W., Subhani A. R., Saad M. N., Malik A. S.: Classification of EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational Neuroscience 11/2017.
DOI: https://doi.org/10.3389/fncom.2017.00103
Google Scholar
Bryan M., Green J., Chung M., Chang L., Scherer R., Smith J., et al.: An adaptive brain-computer interface for humanoid robot control. 2011 11th IEEE-RAS International Conference on Humanoid Robots 2011, 199–204.
Google Scholar
Chen Y.-Y., Lai H.-Y., Lin S.-H., Cho C.-W, Chao W.-H., Liao C.-H., et al.: Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain. Journal of Neuroscience Methods 182(1)/2009, 6–16.
DOI: https://doi.org/10.1016/j.jneumeth.2009.05.010
Google Scholar
Choi J. H., Chung Y., Oh S.: Motion control of joystick interfaced electric wheelchair for improvement of safety and riding comfort. Mechatronics 59/2019, 104–114.
DOI: https://doi.org/10.1016/j.mechatronics.2019.03.005
Google Scholar
Dicianno B. E., Cooper R. A., Coltellaro J.: Joystick Control for Powered Mobility: Current State of Technology and Future Directions. Physical Medicine and Rehabilitation Clinics of North America 21(1)/2010, 79–86.
DOI: https://doi.org/10.1016/j.pmr.2009.07.013
Google Scholar
Gao X., Xu D., Cheng M., Gao S.: A bci-based environmental controller for the motion-disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2)/2003, 137–140.
DOI: https://doi.org/10.1109/TNSRE.2003.814449
Google Scholar
Henriksen E. H., Schjølberg I., Gjersvik T. B.: Adaptable Joystick Control System for Underwater Remotely Operated Vehicles. IFAC-PapersOnLine 49(23)/2016, 167–172.
DOI: https://doi.org/10.1016/j.ifacol.2016.10.338
Google Scholar
Kerous B., Skola F., Liarokapis F.: EEG-based BCI and video games: A progress report. Virtual Reality 22(2)/2017, 119–135.
DOI: https://doi.org/10.1007/s10055-017-0328-x
Google Scholar
Kotowski K., Stapor K., Leski J., Kotas M.: Validation of EMOTIV EPOC for extracting ERP correlates of emotional face processing. Biocybernetics and Biomedical Engineering 38(4)/2018, 773–781.
DOI: https://doi.org/10.1016/j.bbe.2018.06.006
Google Scholar
Lecuyer A., Lotte F., Reilly R., Leeb R., Hirose M., Slater M.: Brain-Computer Interfaces, Virtual Reality, and Videogames. Computer 41(10)/2008, 66–72.
DOI: https://doi.org/10.1109/MC.2008.410
Google Scholar
Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B.: A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering 4(2)/2007.
DOI: https://doi.org/10.1088/1741-2560/4/2/R01
Google Scholar
Modarres M. H., Kuzma N. N., Kretzmer T., Pack A. I., Lim M. M.: EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiology of Sleep and Circadian Rhythms 2/2017, 59–70.
DOI: https://doi.org/10.1016/j.nbscr.2016.06.001
Google Scholar
Nicolas-Alonso L. F., Gomez-Gil J.: Brain Computer Interfaces, a Review. Sensors 12(2)/2012, 1211–1279.
DOI: https://doi.org/10.3390/s120201211
Google Scholar
Paszkiel S.: Data Acquisition Methods for Human Brain Activity. Analysis and Classification of EEG Signals for Brain–Computer Interfaces Studies in Computational Intelligence. Springer 852/2020, 3–9, [http://doi.org/10.1016/j.procs.2017.09.158].
DOI: https://doi.org/10.1016/j.procs.2017.09.158
Google Scholar
Paszkiel Sz.: Facial expressions as an artifact in EEG signal used in the process of controlling a mobile robot with LabVIEW. Przegląd Elektrotechniczny 4/2017, 156–160, [http://doi.org/10.15199/48.2017.04.38].
DOI: https://doi.org/10.15199/48.2017.04.38
Google Scholar
Pour P. A., Gulrez T., Alzoubi O., Gargiulo G., Calvo R. A.: Brain-computer interface: Next generation thought controlled distributed video game development platform. IEEE Symposium On Computational Intelligence and Games 2008.
DOI: https://doi.org/10.1109/CIG.2008.5035647
Google Scholar
Rao R., Scherer R.: Brain-Computer Interfacing [In the Spotlight. IEEE Signal Processing Magazine 27(4)/2010, 152–150.
DOI: https://doi.org/10.1109/MSP.2010.936774
Google Scholar
Rebsamen B., Guan C., Zhang H., Wang C., Teo C., Ang M.H., et al.: A Brain Controlled Wheelchair to Navigate in Familiar Environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(6)/2010, 590–598.
DOI: https://doi.org/10.1109/TNSRE.2010.2049862
Google Scholar
Royer A. S., Doud A. J., Rose M. L., He B.: EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(6)/2010, 581–589.
DOI: https://doi.org/10.1109/TNSRE.2010.2077654
Google Scholar
Song Y.-K., Borton D., Park S., Patterson W., Bull C., Laiwalla F. et al.: Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(4)/2009, 339–345.
DOI: https://doi.org/10.1109/TNSRE.2009.2024310
Google Scholar
Stein A., Yotam Y., Puzis R., Shani G., Taieb-Maimon M.: EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertainment Computing 25/2018, 14–25.
DOI: https://doi.org/10.1016/j.entcom.2017.11.003
Google Scholar
Tezza D., Caprio D., Pinto B., Mantilla I., Andujar M.: An Analysis of Engagement Levels While Playing Brain-Controlled Games. Lecture Notes in Computer Science HCI in Games 2020, 361–372.
DOI: https://doi.org/10.1007/978-3-030-50164-8_26
Google Scholar
Wang Y., Hong B., Gao, Gao S.: Implementation of a Brain-Computer Interface Based on Three States of Motor Imagery. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007, 5059–5062.
DOI: https://doi.org/10.1109/IEMBS.2007.4353477
Google Scholar
Yu J.-H., Sim K.-B.: Classification of color imagination using EMOTIV EPOC and event-related potential in electroencephalogram. Optik 127(20)/2016, 9711–9718.
DOI: https://doi.org/10.1016/j.ijleo.2016.07.074
Google Scholar
https://en.wikipedia.org/wiki/DualShock#/media/File:PSX-DualShock-Controller.jpg, accessed: 08.02.2020
Google Scholar
https://en.wikipedia.org/wiki/Tennis_for_Two#/media/File:Tennis_for_Two_-_Modern_recreation.jpg, accessed: 07.02.2020
Google Scholar
https://emotiv-website-uploads-live.s3.amazonaws.com/uploads/2016/06/epoc-20-10.jpg, accessed: 07.02.2020
Google Scholar
https://emotiv-website-uploads-live.s3.amazonaws.com/uploads/2016/06/Epoc-product-image-510x510.png, accessed: 07.02.2020
Google Scholar
https://www.purepc.pl/gry/historia_kontrolerow_do_gier_pady_joysticki_i_niezwykle_wynalazki, accessed: 08.02.2020
Google Scholar
https://www.emotiv.com/biometrics-diagram/, accessed: 08.02.2020
Google Scholar
Autorzy
Błażej ZającOpole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics Polska
http://orcid.org/0000-0003-3877-5322
Autorzy
Szczepan Paszkiels.paszkiel@po.edu.pl
Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics Polska
http://orcid.org/0000-0002-4917-5712
Statystyki
Abstract views: 650PDF downloads: 399
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Piotr Szpulak, Szczepan Paszkiel, Stanisław Wawrzyniak, Mirosław Gryszpiński, ANALIZA OPŁACALNOŚCI INWESTYCYJNEJ INSTALACJI FOTOWOLTAICZNYCH W SYSTEMIE ON-GRID , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 7 Nr 2 (2017)
- Szczepan Paszkiel, Maciej Matusik, ROZWÓJ INTERNETU RZECZY W POLSCE ZE SZCZEGÓLNYM UWZGLĘDNIENIEM ŚWIADOMOŚCI SPOŁECZEŃSTWA O IOT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 7 Nr 2 (2017)
- Szczepan Paszkiel, SYSTEM INFORMATYCZNY DO ANALIZY STANÓW SKUPIENIA NA BAZIE URZĄDZENIA DZIAŁAJĄCEGO W TECHNOLOGII INTERFEJSÓW MÓZG – KOMPUTER , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 6 Nr 2 (2016)
- Szczepan Paszkiel, DWUMODUŁOWY SYSTEM DO PRZETWARZANIA DANYCH EEG Z WYKORZYSTANIEM ANALIZY CZYNNIKOWEJ I PSEUDOINWERSJI MOORE-PENROSE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 4 Nr 4 (2014)
- Szczepan Paszkiel, Robert Kania, INTERAKTYWNE, WIELOFUNKCYJNE LUSTRO JAKO ELEMENT INTELIGENTNEGO BUDYNKU , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 6 Nr 1 (2016)