TRANSISTOR-BASED TEMPERATURE MEASURING DEVICE

Oleksandra Hotra

o.hotra@pollub.pl
Lublin University of Technology (Poland)
http://orcid.org/0000-0003-2074-347X

Abstract

The schematic diagrams of the temperature measuring device based on transistor structures are presented in the paper. The temperature dependence of collector current without and with linearization of the conversion function is analysed. The linearization method based on compensation current formation is proposed. This allowed to reduce the temperature measurement error up to ± 0.006°C over the temperature ranges 40… 60°C and 60… 80°C and up to 0.08°C over the temperature range 10… 90°C.


Keywords:

temperaturę measurement, transistor structures, linearization

Boano C.A., Lasagni M., Romer K., Lange T.: Accurate temperature measurements for medical research using body sensor networks. 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops 2011, 189–198.
DOI: https://doi.org/10.1109/ISORCW.2011.28   Google Scholar

Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating. Przegląd Elektrotechniczny 5/2019, 110–113.
DOI: https://doi.org/10.15199/48.2019.05.27   Google Scholar

Boyko O., Barylo G., Holyaka R., Hotra Z., Ilkanych K.: Development of signal converter of thermal sensors based on combination of thermal and capacity research methods. Eastern-European Journal of Enterprise Technologies 4/9(94)/2018, 36–42.
DOI: https://doi.org/10.15587/1729-4061.2018.139763   Google Scholar

Chen W., Dols S., Oetomo S.B., Feijs L.: Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. Proceedings of the 5th International Conference on Body Area Networks, Corfu, Greece, 2010, 188–194.
DOI: https://doi.org/10.1145/2221924.2221960   Google Scholar

Crawford D.C., Hicks B., Thompson M.J.: Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. J. Med. Eng. Technol. 30(4)/2006, 199–211.
DOI: https://doi.org/10.1080/03091900600711464   Google Scholar

Goswami A., Bezboruah T., Sarma K.C.: Design of an embedded system for monitoring and controlling temperature and light. International Journal of Electronic Engineering Research 1(1)/2009, 27–36.
  Google Scholar

Goumopoulos C.: A high precision, wireless temperature measurement system for pervasive computing applications. Sensors 18(10)/2018, 3445.
DOI: https://doi.org/10.3390/s18103445   Google Scholar

Hans V.H.: High-precision measurement of absolute temperatures using thermistors. Proceedings of the Estonian Academy of Sciences, Engineering. 13(4)/2007, 379–383.
  Google Scholar

Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proceedings of SPIE 9662, 2015, 966247-1–966247-8.
  Google Scholar

Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przegląd Electrotechniczny 88(4A)/2012, 169–171.
  Google Scholar

Hotra O., Boyko O.: Tranzystorowo-rezystancyjny układ kompensacji wpływu temperatury wolnych końców termopary. Proceedings of Electrotechnical Institute 249/2011, 21–27.
  Google Scholar

Marcelli M., Piermatte V., Madonia A., Marcelli U.: Design and application of new low-cost instruments for marine environmental research. Sensors 14/2014, 23348–23364.
DOI: https://doi.org/10.3390/s141223348   Google Scholar

Papageorgiou C., Sadriwala A., Almoalem M., Sheedy C., Hajjar A.: Environmental Control of a Greenhouse System Using NI Embedded Systems Technology. Journal of Automation and Control Engineering 4(5)/2016, 331–339.
DOI: https://doi.org/10.18178/joace.4.5.331-339   Google Scholar

Prathyusha K., Suman M.C.: Design of embedded systems for the automation of drip irrigation. International Journal of Application or Innovation in Engineering & Management – IJAIEM 1(2), 2012. 2319–4847.
  Google Scholar

Ross-Pinnock D., Maropoulos P.G.: Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(5)/2016, 793–806.
DOI: https://doi.org/10.1177/0954405414567929   Google Scholar

Spencer B., Al-Obeidat F.: Temperature Forecasts with Stable Accuracy in a Smart Home. 7th International Conference on Ambient Systems, Networks and Technologies / The 6th International Conference on Sustainable Energy Information Technology ANT/SEIT 2016, 726–733.
DOI: https://doi.org/10.1016/j.procs.2016.04.160   Google Scholar

Thilagavathi G.: Online farming based on embedded systems and wireless sensor networks. International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) 2013, 71–74.
  Google Scholar

Wunsch C.: Global ocean integrals and means, with trend implications. Annual review of marine science 8/2016, 1–33.
DOI: https://doi.org/10.1146/annurev-marine-122414-034040   Google Scholar

Xie L., Gao Z.H., Gao W., Jin X.A: CMOS Temperature-to-Digital Sensor With ±0.5° Inaccuracy from -55° to 150°. IEEE 19th International Conference on Communication Technology – ICCT, 2019, 1481–1485.
DOI: https://doi.org/10.1109/ICCT46805.2019.8947211   Google Scholar

Download


Published
2020-06-30

Cited by

Hotra, O. (2020). TRANSISTOR-BASED TEMPERATURE MEASURING DEVICE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(2), 4–7. https://doi.org/10.35784/iapgos.1664

Authors

Oleksandra Hotra 
o.hotra@pollub.pl
Lublin University of Technology Poland
http://orcid.org/0000-0003-2074-347X

Statistics

Abstract views: 272
PDF downloads: 219