TRANZYSTOROWY UKŁAD DO POMIARU TEMPERATURY

Oleksandra Hotra

o.hotra@pollub.pl
Politechnika Lubelska (Polska)
http://orcid.org/0000-0003-2074-347X

Abstrakt

W artykule zostały przedstawione schematy miernika temperatury opartego na strukturach tranzystorowych. Została przeanalizowana zależność prądu kolektora od temperatury bez i przy zastosowaniu linearyzacji funkcji przetwarzania. Zaproponowano metodę linearyzacji opartą na formowaniu prądu kompensacyjnego, która pozwoliła zmniejszyć błąd pomiaru temperatury do ± 0,006°C w zakresach temperatury 40… 60°C i 60… 80°C oraz do ±0,08°C w zakresie 10… 90°C.


Słowa kluczowe:

pomiar temperatury, struktury tranzystorowe, linearyzacja

Boano C.A., Lasagni M., Romer K., Lange T.: Accurate temperature measurements for medical research using body sensor networks. 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops 2011, 189–198.
DOI: https://doi.org/10.1109/ISORCW.2011.28   Google Scholar

Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating. Przegląd Elektrotechniczny 5/2019, 110–113.
DOI: https://doi.org/10.15199/48.2019.05.27   Google Scholar

Boyko O., Barylo G., Holyaka R., Hotra Z., Ilkanych K.: Development of signal converter of thermal sensors based on combination of thermal and capacity research methods. Eastern-European Journal of Enterprise Technologies 4/9(94)/2018, 36–42.
DOI: https://doi.org/10.15587/1729-4061.2018.139763   Google Scholar

Chen W., Dols S., Oetomo S.B., Feijs L.: Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. Proceedings of the 5th International Conference on Body Area Networks, Corfu, Greece, 2010, 188–194.
DOI: https://doi.org/10.1145/2221924.2221960   Google Scholar

Crawford D.C., Hicks B., Thompson M.J.: Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. J. Med. Eng. Technol. 30(4)/2006, 199–211.
DOI: https://doi.org/10.1080/03091900600711464   Google Scholar

Goswami A., Bezboruah T., Sarma K.C.: Design of an embedded system for monitoring and controlling temperature and light. International Journal of Electronic Engineering Research 1(1)/2009, 27–36.
  Google Scholar

Goumopoulos C.: A high precision, wireless temperature measurement system for pervasive computing applications. Sensors 18(10)/2018, 3445.
DOI: https://doi.org/10.3390/s18103445   Google Scholar

Hans V.H.: High-precision measurement of absolute temperatures using thermistors. Proceedings of the Estonian Academy of Sciences, Engineering. 13(4)/2007, 379–383.
  Google Scholar

Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proceedings of SPIE 9662, 2015, 966247-1–966247-8.
  Google Scholar

Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przegląd Electrotechniczny 88(4A)/2012, 169–171.
  Google Scholar

Hotra O., Boyko O.: Tranzystorowo-rezystancyjny układ kompensacji wpływu temperatury wolnych końców termopary. Proceedings of Electrotechnical Institute 249/2011, 21–27.
  Google Scholar

Marcelli M., Piermatte V., Madonia A., Marcelli U.: Design and application of new low-cost instruments for marine environmental research. Sensors 14/2014, 23348–23364.
DOI: https://doi.org/10.3390/s141223348   Google Scholar

Papageorgiou C., Sadriwala A., Almoalem M., Sheedy C., Hajjar A.: Environmental Control of a Greenhouse System Using NI Embedded Systems Technology. Journal of Automation and Control Engineering 4(5)/2016, 331–339.
DOI: https://doi.org/10.18178/joace.4.5.331-339   Google Scholar

Prathyusha K., Suman M.C.: Design of embedded systems for the automation of drip irrigation. International Journal of Application or Innovation in Engineering & Management – IJAIEM 1(2), 2012. 2319–4847.
  Google Scholar

Ross-Pinnock D., Maropoulos P.G.: Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(5)/2016, 793–806.
DOI: https://doi.org/10.1177/0954405414567929   Google Scholar

Spencer B., Al-Obeidat F.: Temperature Forecasts with Stable Accuracy in a Smart Home. 7th International Conference on Ambient Systems, Networks and Technologies / The 6th International Conference on Sustainable Energy Information Technology ANT/SEIT 2016, 726–733.
DOI: https://doi.org/10.1016/j.procs.2016.04.160   Google Scholar

Thilagavathi G.: Online farming based on embedded systems and wireless sensor networks. International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) 2013, 71–74.
  Google Scholar

Wunsch C.: Global ocean integrals and means, with trend implications. Annual review of marine science 8/2016, 1–33.
DOI: https://doi.org/10.1146/annurev-marine-122414-034040   Google Scholar

Xie L., Gao Z.H., Gao W., Jin X.A: CMOS Temperature-to-Digital Sensor With ±0.5° Inaccuracy from -55° to 150°. IEEE 19th International Conference on Communication Technology – ICCT, 2019, 1481–1485.
DOI: https://doi.org/10.1109/ICCT46805.2019.8947211   Google Scholar


Opublikowane
2020-06-30

Cited By / Share

Hotra, O. (2020). TRANZYSTOROWY UKŁAD DO POMIARU TEMPERATURY. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(2), 4–7. https://doi.org/10.35784/iapgos.1664

Autorzy

Oleksandra Hotra 
o.hotra@pollub.pl
Politechnika Lubelska Polska
http://orcid.org/0000-0003-2074-347X

Statystyki

Abstract views: 281
PDF downloads: 234