ULEPSZONY ALGORYTM EWOLUCJI RÓŻNICOWEJ Z ADAPTACYJNYMI GRANICAMI WAG DLA EFEKTYWNEGO SZKOLENIA SIECI NEURONOWYCH
Saithip Limtrakul
Khon Kaen University, Faculty of Science, Department of Mathematics (Tajlandia)
http://orcid.org/0000-0002-7207-6640
Jeerayut Wetweerapong
wjeera@kku.ac.thKhon Kaen University, Faculty of Science, Department of Mathematics (Tajlandia)
http://orcid.org/0000-0001-5053-3989
Abstrakt
Sztuczne sieci neuronowe są niezbędnymi inteligentnymi narzędziami do realizacji różnych zadań uczenia się. Ich szkolenie stanowiwyzwanie ze względu na charakter zbioru danych, wiele wag treningowych i ich zależności, co powoduje powstanie skomplikowanej, wielowymiarowejfunkcji błędu do minimalizacji. Dlatego alternatywnym podejściem stały się metody optymalizacji globalnej. Wiele wariantów ewolucji różnicowej (DE)zostało zastosowanych jako metody treningowe do aproksymacji wag sieci neuronowej. Jednak badania empiryczne pokazują, że cierpią one z powoduogólnie ustalonych granic wag. W tym badaniu proponujemy ulepszony algorytm ewolucji różnicowej z adaptacyjnym dopasowaniem granic wag (DEAW)dla efektywnego szkolenia sieci neuronowych. Algorytm DEAW wykorzystuje małe początkowe granice wag i adaptacyjne dostosowanie w procesiemutacji. Stopniowo rozszerza on granice, gdy składowa wektora mutacji osiąga swoje granice. Eksperymentujemy również z wykorzystaniem kilku skalfunkcji aktywacji z algorytmem DEAW. Następnie, stosujemy proponowaną metodę z jej odpowiednim ustawieniem do rozwiązywania problemówaproksymacji funkcji. DEAW może osiągnąć zadowalające rezultaty w porównaniu z rozwiązaniami dokładnymi.
Słowa kluczowe:
sieć neuronowa, ewolucja różnicowa, trening sieci neuronowej, aproksymacja funkcjiBibliografia
Baioletti M., Di Bari G., Milani A., Poggioni V.: Differential Evolution for Neural Networks Optimization. Mathematics 8(1), 2020, 69 [http://doi.org/10.3390/math8010069].
DOI: https://doi.org/10.3390/math8010069
Google Scholar
Bartlett P. L.: For Valid Generalization, the Size of the Weights is More Important than the Size of the Network. Proceedings of the 9th International Conference on Neural Information Processing Systems, 1996, 134–140.
Google Scholar
Bartlett P. L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory 44, 1998, 525–536 [http://doi.org/10.1109/18.661502].
DOI: https://doi.org/10.1109/18.661502
Google Scholar
Chen L.: A global optimization algorithm for neural network training. Proceedings of International Conference on Neural Networks 1993, 443–446 [http://doi.org/10.1109/IJCNN.1993.713950].
DOI: https://doi.org/10.1109/IJCNN.1993.713950
Google Scholar
Chihaoui M., Bellil W., Amar C. B.: Multi Mother Wavelet Neural Network based on Genetic Algorithm for 1D and 2D Functions Approximation. Proceedings of the International Conference on Fuzzy Computation and International Conference on Neural Computation 2010, 429–434 [http://doi.org/10.5220/0003083704290434].
DOI: https://doi.org/10.5220/0003083704290434
Google Scholar
Cong H., Nguyen N., Huy V. N., Bùi T.: The Influence of Initial Weights on Neural Network Training. Journal of Science and Technology 95, 2013, 18–25.
Google Scholar
Das S., Suganthan P. N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15, 2011, 4–31 [http://doi.org/10.1109/TEVC.2010.2059031].
DOI: https://doi.org/10.1109/TEVC.2010.2059031
Google Scholar
Das S., Mullick S. S., Suganthan P. N.: Recent advances in differential evolution – An updated survey. Swarm and Evolutionary Computation 17, 2016, 1–30 [http://doi.org/10.1016/j.swevo.2016.01.004].
DOI: https://doi.org/10.1016/j.swevo.2016.01.004
Google Scholar
Dhar V. K., Tickoo A. K., Koul R., Dubey B. P.: Comparative performance of some popular artificial neural network algorithms on benchmark and function approximation problems. Pramana 74, 2010, 307–324 [http://doi.org/10.1007/s12043-010-0029-4].
DOI: https://doi.org/10.1007/s12043-010-0029-4
Google Scholar
Gao Y., Liu J.: A modified differential evolution algorithm and its application in the training of BP neural network. IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2008, 1373–1377.
Google Scholar
Garro B. A., Sossa H., Vázquez R. A.: Evolving Neural Networks: A Comparison between Differential Evolution and Particle Swarm Optimization. Advances in Swarm Intelligence 2011, 447–454 [http://doi.org/10.1007/978-3-642-21515-5_53].
DOI: https://doi.org/10.1007/978-3-642-21515-5_53
Google Scholar
Hahm N., Hong B. I.: An approximation by neural networkswith a fixed weight. Computers and Mathematics with Applications 47, 2004, 1897–1903 [http://doi.org/10.1016/j.camwa.2003.06.008].
DOI: https://doi.org/10.1016/j.camwa.2003.06.008
Google Scholar
Ismailov V. E.: Approximation by neural networks with weights varying on a finite set of directions. Journal of Mathematical Analysis and Applications 389, 2012, 72–83 [http://doi.org/10.1016/j.jmaa.2011.11.037].
DOI: https://doi.org/10.1016/j.jmaa.2011.11.037
Google Scholar
Jesus R. J., Antunes M. L., da Costa R. A., Dorogovtsev S. N., Mendes J. F., Aguiar R. L.: Effect of the initial configuration of weights on the training and function of artificial neural networks. Mathematics 9, 2021, 1–16 [http://doi.org/10.3390/math9182246].
DOI: https://doi.org/10.3390/math9182246
Google Scholar
Mendes R., Cortez P., Rocha M., Neves J.: Particle swarms for feedforward neural network training. Proceedings of the International Joint Conference on Neural Networks – IJCNN'02 2002, 1895–1899 [http://doi.org/10.1109/IJCNN.2002.1007808].
DOI: https://doi.org/10.1109/IJCNN.2002.1007808
Google Scholar
Mezura M. E., Velázquez R. J., Coello C.: A comparative study of differential evolution variants for global optimization. GECCO 2006 – Genetic and Evolutionary Computation Conference 1, 2006, 485–492 [http://doi.org/10.1145/1143997.1144086].
DOI: https://doi.org/10.1145/1143997.1144086
Google Scholar
Migdady H.: Boundness of a Neural Network Weights Using the Notion of a Limit of a Sequence. International Journal of Data Mining and Knowledge Management Process 4, 2014, 1–8 [http://doi.org/10.5121/ijdkp.2014.4301].
DOI: https://doi.org/10.5121/ijdkp.2014.4301
Google Scholar
Mirjalili S. A., Hashim S. Z. M., Sardroudi H. M. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation 218, 2012, 11125–11137 [http://doi.org/10.1016/j.amc.2012.04.069].
DOI: https://doi.org/10.1016/j.amc.2012.04.069
Google Scholar
Morse G., Stanley K. O.: Simple Evolutionary Optimization Can Rival Stochastic Gradient Descent in Neural Networks. Proceedings of the Genetic and Evolutionary Computation Conference 2016, 477–484 [http://doi.org/10.1145/2908812.2908916].
DOI: https://doi.org/10.1145/2908812.2908916
Google Scholar
Mohamad F. A., Nor A. M. I., Wei H. L., Koon M. A.: Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal 61(5), 2022, 3831–3872 [http://doi.org/10.1016/j.aej.2021.09.013].
DOI: https://doi.org/10.1016/j.aej.2021.09.013
Google Scholar
Piotrowski A. P.: Differential Evolution algorithms applied to Neural Network training suffer from stagnation. Applied Soft Computing 21, 2014, 382–406 [http://doi.org/10.1016/j.asoc.2014.03.039].
DOI: https://doi.org/10.1016/j.asoc.2014.03.039
Google Scholar
Prechelt L.: A quantitative study of experimental evaluations of neural network learning algorithms: Current research practice. Neural Networks 9, 1996, 457–462 [http://doi.org/10.1016/0893-6080(95)00123-9].
DOI: https://doi.org/10.1016/0893-6080(95)00123-9
Google Scholar
Prieto A., Prieto B., Ortigosa E. M., Ros E.: Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing 214, 2016, 242–268 [http://doi.org/10.1016/j.neucom.2016.06.014].
DOI: https://doi.org/10.1016/j.neucom.2016.06.014
Google Scholar
Rumelhart D. E., Hinton G. E., Williams R. J.: Learning representations by back-propagating errors. Nature 323, 1986, 533–536 [http://doi.org/10.1038/323533a0].
DOI: https://doi.org/10.1038/323533a0
Google Scholar
Si T., Hazra S., Jana N. D.: Artificial Neural Network Training Using Differential Evolutionary Algorithm for Classification. Advances in Intelligent and Soft Computing 232, 2012, 769–778 [http://doi.org/10.1007/978-3-642-27443-5-88].
DOI: https://doi.org/10.1007/978-3-642-27443-5_88
Google Scholar
Storn R., Price K.: Differential Evolution A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 1997, 341–359 [http://doi.org/10.1023/A:1008202821328].
DOI: https://doi.org/10.1023/A:1008202821328
Google Scholar
Subudhi B., Jena D.: An improved differential evolution trained neural network scheme for nonlinear system identification. International Journal of Automation and Computing 6, 2009, 137–144 [http://doi.org/10.1007/s11633-009-0137-0].
DOI: https://doi.org/10.1007/s11633-009-0137-0
Google Scholar
Yang S., Ting T. O., Man K. L., Guan S. U.: Investigation of Neural Networks for Function Approximation. Procedia Computer Science 17, 2013, 586–594 [http://doi.org/10.1016/j.procs.2013.05.076].
DOI: https://doi.org/10.1016/j.procs.2013.05.076
Google Scholar
Zainuddin Z., Pauline O.: Function Approximation Using Artificial Neural Networks. International Journal of Systems Applications, Engineering and Development 1, 2007, 173–178 [http://doi.org/10.5555/1466915.1466916].
Google Scholar
Zhang J. R., Lok T. M., Lyu M. R.: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Applied Mathematics and Computation 185, 2007, 1026–1037 [http://doi.org/10.1016/j.amc.2006.07.025].
DOI: https://doi.org/10.1016/j.amc.2006.07.025
Google Scholar
UCI machine learning benchmark repository. the UC Irvine Machine Learning Repository, 2019 [http://archive.ics.uci.edu/ml/datasets.php].
Google Scholar
Autorzy
Saithip LimtrakulKhon Kaen University, Faculty of Science, Department of Mathematics Tajlandia
http://orcid.org/0000-0002-7207-6640
Autorzy
Jeerayut Wetweerapongwjeera@kku.ac.th
Khon Kaen University, Faculty of Science, Department of Mathematics Tajlandia
http://orcid.org/0000-0001-5053-3989
Statystyki
Abstract views: 212PDF downloads: 243
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong, ADAPTACYJNY RÓŻNICZKOWY ALGORYTM EWOLUCYJNY ZE STRATEGIĄ DOSTOSOWYWANIA GRANIC DO ROZWIĄZYWANIA NIELINIOWYCH PROBLEMÓW IDENTYFIKACJI PARAMETRÓW , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 14 Nr 2 (2024)