SUBSTANCJE SENSYBILIZUJĄCE I ICH WPŁYW NA SPRAWNOŚĆ BARWNIKOWYCH OGNIW SŁONECZNYCH (DSSC): PRZEGLĄD

Ewelina Krawczak

e.krawczak@pollub.pl
Lublin University of Technology (Polska)
http://orcid.org/0000-0001-9951-3348

Abstrakt

Od początku lat 90 XX wieku ogniwa barwnikowe przyciągają uwagę naukowców na całym świecie. Praca ta poświęcona jest przeglądowi badań dotyczących wpływowi substancji sensybilizujących na sprawność barwnikowych ogniw słonecznych (DSSC). Największą sprawność uzyskują ogniwa sensybilizowane barwnikami na bazie rutenu, podczas gdy barwniki naturalne pozwalają na pracę z wydajnością 4,6%. Sprawność konwersji energii ogniw uczulanych barwnikami organicznymi wynosi 5-9%, jednakże niektóre z nich, np. Y123 pozwalają na uzyskanie wydajności rzędu 10,3%. Zastosowanie kilku barwników do sensybilizacji jest nowym podejściem, które przekłada się na wartości sprawności nawet do 14,3%.


Słowa kluczowe:

ogniwa fotowoltaiczne, odnawialne źródła energii, konwersja energii, barwnikowe ogniwa słoneczne (DSSC)

Adedokun O., Titilope K., Awodugba A.O.: Review on natural dye-sensitized solar cells review on natural dye-sensitized solar cells (DSSCs). International Journal of Engineering Technologies 2/2016, 34–41, [DOI: 10.19072/ijet.96456].
DOI: https://doi.org/10.19072/ijet.96456   Google Scholar

Adel R., Abdallah T., Moustafa Y.M., Al-sabagh A.M., Talaat, H.:
  Google Scholar

Effect of polymer electrolyte on the performance of natural dye sensitized solar cells. Superlattices and Microstructures 86/2015, 62–67, [DOI: 10.1016/j.spmi.2015.07.024].
DOI: https://doi.org/10.1016/j.spmi.2015.07.024   Google Scholar

Ahmad S., Guillén E., Kavan L., Grätzel M., Nazeeruddin M.K.: Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science 6/2013, 3439–3466, [DOI: 10.1039/C3EE41888J].
DOI: https://doi.org/10.1039/c3ee41888j   Google Scholar

Ayalew W.A., Ayele D.W.: Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. Journal of Science: Advanced Materials and Devices 1/2016, 488–494, [DOI: 10.1016/j.jsamd.2016.10.003].
DOI: https://doi.org/10.1016/j.jsamd.2016.10.003   Google Scholar

Bakr N., Ali A., Jassim S., Hassoon K.: Effect of N719 Dye Concentration on the Conversion Efficiency of Dye Sensitized Solar Cells. ZANCO Journal of Pure and Applied Sciences 29/2017, 274–280 [DOI: 10.21271/ZJPAS.29.s4.31].
DOI: https://doi.org/10.21271/ZJPAS.29.s4.31   Google Scholar

Bessho T., Constable E.C., Graetzel M., Redondo A.H., Housecroft C.E., Kylberg W., Nazeeruddin M.K., Neuburgerb M., Schaffner S.: An element of surprise—efficient copper-functionalized dye-sensitized solar cells. Chemical Communications 32/2008, 3717–3719, [ DOI: 10.1039/B808491B].
DOI: https://doi.org/10.1039/b808491b   Google Scholar

Blaschke T., Biberacher M., Gadocha S., Schardinger I.: ‘Energy landscapes’: Meeting energy demands and human aspirations. Biomass and Bioenergy 55/ 2013, 3–16, [DOI: 10.1016/j.biombioe.2012.11.022].
DOI: https://doi.org/10.1016/j.biombioe.2012.11.022   Google Scholar

Calogero G., Yum J.-H., Sinopoli A., Di Marco G., Gratzel M., Nazeeruddin M. K.: Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy 86/2012, 1563–1575, [DOI: 10.1016/j.solener.2012.02.018].
DOI: https://doi.org/10.1016/j.solener.2012.02.018   Google Scholar

Chang H., Lo Y.-J.: Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy 84/2010, 1833–1837, [DOI: 10.1016/j.solener.2010.07.009].
DOI: https://doi.org/10.1016/j.solener.2010.07.009   Google Scholar

Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics 45/2006, 24–28, [DOI: 10.1143/JJAP.45.L638].
DOI: https://doi.org/10.1143/JJAP.45.L638   Google Scholar

De Angelis F., Fantacci S., Mosconi E., Nazeeruddin M.K., Grätzel M.: Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. The Journal of Physical Chemistry C 115/211, 8825–8831, [DOI: 10.1021/jp111949a].
DOI: https://doi.org/10.1021/jp111949a   Google Scholar

Dobrzański L.A., Szindler M.M., Szindler M., Dudek A., Krawiec K.: The influence of natural and synthetic dyes on the absorbance of nanocrystalline TiO2 used in dye sensitized solar cells. Journal of Achievements in Materials and Manufacturing Engineering 69/2015, 53–58.
  Google Scholar

Durrant J.R., Haque S.A., Palomares E.: Towards Optimisation of Electron Transfer Processes in Dye Sensitised Solar Cells. Coordination Chemistry Reviews 248/2004, 1247–1257, [DOI: 10.1016/j.ccr.2004.03.014].
DOI: https://doi.org/10.1016/j.ccr.2004.03.014   Google Scholar

Funaki T., Yanagida M., Onozawa-Komatsuzaki N., Kawanishi Y., Kasuga K.,, Sugihara H.: A 2-quinolinecarboxylate-substituted ruthenium(II) complex as a new type of sensitizer for dye-sensitized solar cells. Inorganica Chimica Acta 362/2009, 2519–2522, [DOI: 10.1016/j.ica.2008.10.019].
DOI: https://doi.org/10.1016/j.ica.2008.10.019   Google Scholar

Ghann W., Kang H., Sheikh T., Yadav S., Chavez-Gil T., Nesbitt F., Uddin J.: Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell. Scientific Reports 7/2017, 1–12, [DOI: 10.1038/srep41470].
DOI: https://doi.org/10.1038/srep41470   Google Scholar

Hemmatzadeh R., Jamali A.: Enhancing the optical absorption of anthocyanins for dye-sensitized solar cells. Journal of Renewable and Sustainable Energy 7/2015, [DOI: 10.1063/1.4907599].
DOI: https://doi.org/10.1063/1.4907599   Google Scholar

Iqbal M.Z., Ali S.R., Khan S.: Progress in dye sensitized solar cell by incorporating natural photosensitizers. Solar Energy 181/2019, 490–509, [DOI: 10.1016/j.solener.2019.02.023].
DOI: https://doi.org/10.1016/j.solener.2019.02.023   Google Scholar

Jackson P., Wuerz R., Hariskos D., Lotter E., Witte W., Powalla M.: Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi 10/2016, 583–586, [DOI: 10.1002/pssr.201600199].
DOI: https://doi.org/10.1002/pssr.201600199   Google Scholar

Jonathan E., Onimisi M.Y., Eli D.: Natural pigments as sensitizers for dye sensitized solar cells. Advances in Materials 5/2016, 31–34, [DOI: 10.11648/j.am.20160505.11].
DOI: https://doi.org/10.11648/j.am.20160505.11   Google Scholar

Kabir F., Sakib S.N., Matin N.: Stability study of natural green dye based DSSC. Optik 181/2019, 458–464, [DOI: 10.1016/j.ijleo.2018.12.077].
DOI: https://doi.org/10.1016/j.ijleo.2018.12.077   Google Scholar

Kakiage K., Aoyama Y., Yano T., Oya K., Fujisawa J.-I., Hanaya M.: Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical Communications 51/2015, 15894–15897, [DOI: 10.1039/c5cc06759f].
DOI: https://doi.org/10.1039/C5CC06759F   Google Scholar

Krawczak E., Zdyb A.: The influence of the dye adsorption time on the DSSC performance. E3S Web of Conferences 100/2019, [DOI: 10.1051/e3sconf/201910000040].
DOI: https://doi.org/10.1051/e3sconf/201910000040   Google Scholar

Kumar, R., Sharma, A.K., Parmar, V.S., Watterson, A.C., Chittibabu, K.G., Kumar, J., Samuelson, L.A.: Flexible, dye-sensitized nanocrystalline solar cells employing biocatalytically synthesized polymeric electrolytes. Chemistry of Materials 16/2004, 4841–4846, [DOI: 10.1021/cm0496568].
DOI: https://doi.org/10.1021/cm0496568   Google Scholar

Lee C.-P., Lin R. Y.-Y., Lin L.-Y., Li C.-T., Chu T.-C., Sun S.-S, Lin J. T., Ho K.-C.: Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances 5/2015, 23810–23825, [DOI: 10.1039/C4RA16493H].
DOI: https://doi.org/10.1039/C4RA16493H   Google Scholar

Lee K. E., Gomez M. A., Elouatik S., Demopoulos G. P.: Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 26/2010, 9575–9583, [DOI: 10.1021/la100137u].
DOI: https://doi.org/10.1021/la100137u   Google Scholar

Li W., Lv F., Shu T., Tan X., Jiang L., Xiao T., Xiang P.: Improving the performance of FTO conducting glass by SiO2 and ZnO anti-reflection films for dye-sensitized solar cells. Materials Letters 243/2019, 108–111, [DOI: 10.1016/j.matlet.2019.01.158].
DOI: https://doi.org/10.1016/j.matlet.2019.01.158   Google Scholar

Mahmood A.: Triphenylamine based dyes for dye sensitized solar cells: a review. Solar Energy 123/2016, 127–144, [DOI: 10.1016/j.solener.2015.11.015].
DOI: https://doi.org/10.1016/j.solener.2015.11.015   Google Scholar

Mallick A., Basak D.: Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs. Progress in Materials Science 96/2018, 86–110, [DOI: 10.1016/j.pmatsci.2018.03.004].
DOI: https://doi.org/10.1016/j.pmatsci.2018.03.004   Google Scholar

Manmeeta, Dhiraj S., Sharma G.D., Roy M.S: Improved performance of oxidized Alizarin based Quasi solid state Dye Sensitized solar cell by Surface Treatment. Research Journal of Chemical Sciences 2/2012, 61–71.
  Google Scholar

Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., Gratzel M.: Dye-sensitizedsolar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6/2014, 242–247, [DOI: 10.1038/nchem.1861].
DOI: https://doi.org/10.1038/nchem.1861   Google Scholar

Mehmood, U., Rahman, S.-U., Harrabi, K., Hussein, I.A., Reddy, B.: Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering 2014, 1–12, [DOI: 10.1155/2014/974782].
DOI: https://doi.org/10.1155/2014/974782   Google Scholar

O’Regan B., Grätzel M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353/1991, 737–740, [DOI: 10.1038/353737a0].
DOI: https://doi.org/10.1038/353737a0   Google Scholar

Polo A.S., Itokazu M.K., Iha N.Y.M.: Metal complex sensitizers in dye sensitized solar cells. Coordination Chemistry Reviews 248/2004, 1343–1361, [DOI: 10.1016/j.ccr.2004.04.013].
DOI: https://doi.org/10.1016/j.ccr.2004.04.013   Google Scholar

Roslan N., Ya'acob M.E., Radzi M.A.M., Hashimoto Y., Jamaludin D., Chen G.: Dye Sensitized SolarCell (DSSC) greenhouse shading: New insights for solar radiation manipulation. Renewable and Sustainable Energy Reviews 92/2018, 171–186, [DOI: 10.1016/j.rser.2018.04.095].
DOI: https://doi.org/10.1016/j.rser.2018.04.095   Google Scholar

Saini R. K., Kadyan P. S., Singh J., Bhagwan S., Singh D.: Fabrication and Photovoltaic Characteristics of Alizarin Dye Based DSSCs. Der Pharma Chemica 11/ 2019, 43–48 [ISSN 0975-413X].
  Google Scholar

Sawhney N., Raghav A., Satapathi S.: Utilization of Naturally Occurring Dyes as Sensitizers in Dye Sensitized Solar Cells. IEEE Journal of Photovoltaics 7/2016, 539–544, [DOI: 10.1109/JPHOTOV.2016.2639343].
DOI: https://doi.org/10.1109/JPHOTOV.2016.2639343   Google Scholar

Shelke R.S., Thombre S.B., Patrikar S.R.: Status and perspectives of dyes used in dye sensitized solar cells. International Journal of Renewable Energy Research 3/2013, 54–61.
  Google Scholar

Shikoh A. S., Ahmad Z., Touati F., Shakoor R.A., Al-Muhtaseb S. A.: Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceramics International 43/2017, 10540–10545, [DOI: 10.1016/j.ceramint.2017.05.113].
DOI: https://doi.org/10.1016/j.ceramint.2017.05.113   Google Scholar

Singh A.M.B.G., Durai A., Murugeasan S.: Evaluation of Colour and Stability of Anthocyanin in Red Tamarind (Tamarindus indica L). International Journal of Advanced Life Sciences 5/2012, 137–144.
  Google Scholar

Syafinar R., Gomesh N., Irwanto M., Fareq M., Irwan Y.M.: Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia 79/2015, 896–902, [DOI: 10.1016/j.egypro.2015.11.584].
DOI: https://doi.org/10.1016/j.egypro.2015.11.584   Google Scholar

Taya S.A., El-Agez T.M., El-Ghamri H.S., Abdel-Latif M.S.: Dye-sensitized solar cells using fresh and dried natural dyes. International Journal of Materials Science and Applications 2/2013, 37–42, [DOI: 10.11648/j.ijmsa.20130202.11].
DOI: https://doi.org/10.11648/j.ijmsa.20130202.11   Google Scholar

Taya S.A., El-Agez T.M., Elferi K.S.: Dye-sensitized solar cells based on dyes extracted from dried plant leaves. Turkish Journal of Physics 39/2015, 24–30, [DOI: 10.3906/fiz-1312-12].
DOI: https://doi.org/10.3906/fiz-1312-12   Google Scholar

Tennakone K., Bandara J.: Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Applied Catalysis A General 208/2001, 335–341, [DOI: 10.1016/S0926-860X(00)00738-9].
DOI: https://doi.org/10.1016/S0926-860X(00)00738-9   Google Scholar

Tributsch H.: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Journal of Photo-chemistry and Photobiology 16/1972, 261–269, [DOI: 10.1111/j.1751-1097.1972.tb06297.x].
DOI: https://doi.org/10.1111/j.1751-1097.1972.tb06297.x   Google Scholar

Tsao H.N., Burschka J., Yi C., Kessler F., Nazeeruddin M.K., Grätzel M.: Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science 4/2011, 4921–4924, [DOI: 10.1039/C1EE02389F].
DOI: https://doi.org/10.1039/c1ee02389f   Google Scholar

Türkay B.E., Telli A.Y.: Economic Analysis of Stand Alone and Grid Connected Hybrid Energy Systems. Renewable Energy 36/2011, 1931–1943, [DOI: 10.12691/ajme-4-5-3].
  Google Scholar

Wang X.-F., Zhan C.-H., Maoka T., Wada Y., Koyama Y.: Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame). Chemical Physics Letters 447/2007, 79–85, [DOI: 10.1016/j.cplett.2007.08.097].
DOI: https://doi.org/10.1016/j.cplett.2007.08.097   Google Scholar

Wei D.: Dye Sensitized Solar Cells. International Journal of Molecular Sciences 11/2010, 1103–1113, [DOI: 10.3390/ijms11031103].
DOI: https://doi.org/10.3390/ijms11031103   Google Scholar

Yella A., Lee H.-W., Tsao H.N., Yi C., Chandiran A K., Nazeeruddin Md.K., Diau E.W.-G., Yeh C.-Y., Zakeeruddin S.M., Grätzel M.: Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 334/2011, 629–634, [DOI: 10.1126/science.1209688].
DOI: https://doi.org/10.1126/science.1209688   Google Scholar

Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2/2017, 1–8, [DOI: 10.1038/nenergy.2017.32].
DOI: https://doi.org/10.1038/nenergy.2017.32   Google Scholar

Zhang D., Lanier S.M., Downing J.A., Avent J.L., Lum J., McHale J.L.: Betalain pigments for dyesensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 195/2008, 72–80, [DOI: 10.1016/j.jphotochem.2007.07.038].
DOI: https://doi.org/10.1016/j.jphotochem.2007.07.038   Google Scholar

Zhang S., Yang X., Numata Y., Han L.: Highly efficient dye-sensitized solar cells: progress and future challenges. Energy & Environmental Science 6/2013,1443–1464, [DOI: 10.1039/C3EE24453A].
DOI: https://doi.org/10.1039/c3ee24453a   Google Scholar

Eurepean Commisssion Statement, http://europa.eu/rapid/press-release_STATEMENT-18-4155_en.htm [01.08.2019].
  Google Scholar

International Energy Agency, Executive Summary, 2018, IEA Publications, https://webstore.iea.org/download/summary/190?fileName=English-WEO-2018-ES.pdf [01.08.2019].
  Google Scholar


Opublikowane
2019-09-26

Cited By / Share

Krawczak, E. (2019). SUBSTANCJE SENSYBILIZUJĄCE I ICH WPŁYW NA SPRAWNOŚĆ BARWNIKOWYCH OGNIW SŁONECZNYCH (DSSC): PRZEGLĄD. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(3), 86–90. https://doi.org/10.35784/iapgos.34

Autorzy

Ewelina Krawczak 
e.krawczak@pollub.pl
Lublin University of Technology Polska
http://orcid.org/0000-0001-9951-3348

Statystyki

Abstract views: 778
PDF downloads: 561