INTELIGENTNA TECHNIKA WYBORU OPTYMALIZATORA: BADANIE PORÓWNAWCZE ZMODYFIKOWANEGO MODELU DENSENET201 Z INNYMI MODELAMI GŁĘBOKIEGO UCZENIA

Kamaran Manguri

kamaran@uor.edu.krd
1Erbil Polytechnic University, Erbil Technical Engineering College, Department of Technical Information System Engineering, 2University of Raparin, Department of Software and Informatics Engineering (Irak)
https://orcid.org/0000-0001-8567-3367

Aree A. Mohammed


University of Sulaimani, College of Science, Computer Science Department (Irak)
https://orcid.org/0000-0001-9710-4559

Abstrakt

Szybki wzrost i rozwój aplikacji opartych na sztucznej inteligencji wprowadzają szeroki zakres architektur modeli głębokiego uczenia i uczenia transferowego. Wybór optymalnego optymalizatora wciąż stanowi wyzwanie w celu poprawy wydajności i dokładności każdego rodzaju klasyfikacji. W niniejszej pracy proponowana jest inteligentna technika wyboru optymalizatora, wykorzystująca nowy algorytm wyszukiwania, aby pokonać to wyzwanie. Zbiór danych użyty w tej pracy został zebrany i dostosowany do celów kontroli i monitorowania dróg, zwłaszcza w sytuacjach, gdy zbliżają się pojazdy ratunkowe. W tym kontekście porównano kilka modeli głębokiego uczenia i uczenia transferowego w celu dokładnej detekcji i klasyfikacji. Ponadto, warstwy DenseNet201 zostały zamrożone, aby wybrać optymalizatora idealnego. Głównym celem jest poprawa dokładności klasyfikacji samochodów ratunkowych poprzez przeprowadzenie testów różnych metod optymalizacji, w tym (Adam, Adamax, Nadam i RMSprob). Metryki oceny wykorzystane do porównania modelu z innymi technikami głębokiego uczenia opierają się na dokładności klasyfikacji, precyzji, czułości i miarze F1. Wyniki testów pokazują, że zaproponowany optymalizator oparty na wyborze zwiększył dokładność klasyfikacji i osiągnął wynik na poziomie 98,84%.


Słowa kluczowe:

głębokie uczenie, technika optymalizacji, uczenie transferowe, dostosowany zbiór danych, zmodyfikowany DenseNet201

Ahmed T. et al.: A Deep Learning based Bangladeshi Vehicle Classification using Fine-Tuned Multi-class Vehicle Image Network (MVINet) Model. 2023 International Conference on Next-Generation Computing, IoT and Machine Learning – NCIM, 2023, 1–6.
DOI: https://doi.org/10.1109/NCIM59001.2023.10212619   Google Scholar

Ahmed U. et al.: Multi-aspect detection and classification with multi-feed dynamic frame skipping in vehicle of internet things. Wireless Netw, 2022, 1–12.
DOI: https://doi.org/10.1007/s11276-022-03076-9   Google Scholar

Ashir S. M. et al.: A Transfer-Learning-Based Approach for Emergency Vehicle Detection. Eurasian Journal of Science and Engineering 8(1), 2022.
DOI: https://doi.org/10.23918/eajse.v8i1p75   Google Scholar

Biswas D. et al.: An automatic car counting system using OverFeat framework. Sensors 17(7), 2017, 1535.
DOI: https://doi.org/10.3390/s17071535   Google Scholar

Dong S. et al.: A survey on deep learning and its applications, Computer Science Review 40, 2021, 100379.
DOI: https://doi.org/10.1016/j.cosrev.2021.100379   Google Scholar

Fouad M. M. et al.: Automated vehicle inspection model using a deep learning approach. J Ambient Intell Human Comput 14, 2023, 13971–13979.
DOI: https://doi.org/10.1007/s12652-022-04105-3   Google Scholar

Ghazal B. et al.: Smart traffic light control system. Third international conference on electrical, electronics, computer engineering and their applications – EECEA, 2016, 140–145.
DOI: https://doi.org/10.1109/EECEA.2016.7470780   Google Scholar

Hassan E. et al.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Elmougy and Applications 82(11), 2023, 16591–16633.
DOI: https://doi.org/10.1007/s11042-022-13820-0   Google Scholar

Impedovo D. et al.: Vehicular traffic congestion classification by visual features and deep learning approaches: a comparison. Sensors 19(23), 2019, 5213.
DOI: https://doi.org/10.3390/s19235213   Google Scholar

Jain N. K. et al.: A review on traffic monitoring system techniques. SoCTA 2019, 569–577.
DOI: https://doi.org/10.1007/978-981-13-0589-4_53   Google Scholar

Joo H. et al.: Traffic signal control for smart cities using reinforcement learning. Computer Communications 154, 2020, 324–330.
DOI: https://doi.org/10.1016/j.comcom.2020.03.005   Google Scholar

Jung H. et al.: ResNet-based vehicle classification and localization in traffic surveillance systems. IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, 61–67.
DOI: https://doi.org/10.1109/CVPRW.2017.129   Google Scholar

Ke X. et al.: Multi-dimensional traffic congestion detection based on fusion of visual features and convolutional neural network. IEEE Transactions on Intelligent Transportation Systems 20(6), 2018, 2157–2170.
DOI: https://doi.org/10.1109/TITS.2018.2864612   Google Scholar

Khan A. et al.: A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53, 2020, 5455–5516.
DOI: https://doi.org/10.1007/s10462-020-09825-6   Google Scholar

Leitner D. et al.: Recent advances in traffic signal performance evaluation. Journal of Traffic and Transportation Engineering 9(4), 2022, 507–531.
DOI: https://doi.org/10.1016/j.jtte.2022.06.002   Google Scholar

Manguri K. H. K. et al.: A Review of Computer Vision–Based Traffic Controlling and Monitoring. UHD Journal of Science and Technology 7(2), 2023, 6–15.
DOI: https://doi.org/10.21928/uhdjst.v7n2y2023.pp6-15   Google Scholar

Manguri K. H. K., Mohammed A. A: Emergency vehicles classification for traffic signal system using optimized transfer DenseNet201 model. Indonesian Journal of Electrical Engineering and Computer Science 32(2), 2023, 1058–1068.
DOI: https://doi.org/10.11591/ijeecs.v32.i2.pp1058-1069   Google Scholar

Mohammad M. A. et al.: New Ontology structure for intelligent controlling of traffic signals. Procedia Computer Science 207, 2022, 1201–1211.
DOI: https://doi.org/10.1016/j.procs.2022.09.176   Google Scholar

Qadri S. S. S. M. et al.: State-of-art review of traffic signal control methods: challenges and opportunities. Eur. Transp. Res. Rev. 12(55), 2020, 1–23.
DOI: https://doi.org/10.1186/s12544-020-00439-1   Google Scholar

Razali N. A. M. et al.: Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning. J Big Data 8(1), 2021, 1–25.
DOI: https://doi.org/10.1186/s40537-021-00542-7   Google Scholar

Roy S., Rahman M. S.: Emergency vehicle detection on heavy traffic road from cctv footage using deep convolutional neural network. International Conference on Electrical, Computer and Communication Engineering – ECCE, 2019, 1–6.
DOI: https://doi.org/10.1109/ECACE.2019.8679295   Google Scholar

Tomar I. et al.: State-of-Art review of traffic light synchronization for intelligent vehicles: current status, challenges, and emerging trends. Electronics 11(3), 2022, 465.
DOI: https://doi.org/10.3390/electronics11030465   Google Scholar


Opublikowane
2023-12-20

Cited By / Share

Manguri, K., & Mohammed, A. A. (2023). INTELIGENTNA TECHNIKA WYBORU OPTYMALIZATORA: BADANIE PORÓWNAWCZE ZMODYFIKOWANEGO MODELU DENSENET201 Z INNYMI MODELAMI GŁĘBOKIEGO UCZENIA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(4), 39–43. https://doi.org/10.35784/iapgos.5332

Autorzy

Kamaran Manguri 
kamaran@uor.edu.krd
1Erbil Polytechnic University, Erbil Technical Engineering College, Department of Technical Information System Engineering, 2University of Raparin, Department of Software and Informatics Engineering Irak
https://orcid.org/0000-0001-8567-3367

Autorzy

Aree A. Mohammed 

University of Sulaimani, College of Science, Computer Science Department Irak
https://orcid.org/0000-0001-9710-4559

Statystyki

Abstract views: 186
PDF downloads: 166