WPŁYW UDERZENIA PIORUNA NA HYBRYDOWĄ LINIĘ WYSOKIEGO NAPIĘCIA NAPOWIETRZNA LINIA PRZESYŁOWA – IZOLOWANA LINIA GAZOWA
Samira Boumous
boumous@yahoo.frMohamed Cherif Messaidia University, Electrical Engineering Department, Laboratory of Electrical Engineering and Renewable Energy (Algieria)
https://orcid.org/0000-0003-2213-6542
Zouhir Boumous
Mohamed Cherif Messaidia University, Electrical Engineering Department, Laboratory of Electrical Engineering and Renewable Energy (Algieria)
Yacine Djeghader
Mohamed Cherif Messaidia University, Electrical Engineering Department, Laboratory of Electrical Engineering and Renewable Energy (Algieria)
Abstrakt
Sieć elektryczna to zbiór elementów, w których obciążenia są połączone z elektrowniami za pomocą linii przesyłowych. Mogą to być linie napowietrzne lub podziemne. Nowa technologia została wprowadzona w celu zastąpienia tych linii przesyłowych podziemnymi kablami w izolacji gazowej "GIL". Najnowsza technologia ma wiele zalet w porównaniu z kablami podziemnymi i napowietrznymi liniami przesyłowymi, takich jak niskie straty przesyłowe, mniejsze obciążenie pojemnościowe, niezawodność, bezpieczeństwo obsługi, takie samo działanie jak w przypadku linii napowietrznych i znikome starzenie elektryczne. GIL może obsługiwać znacznie większą moc niż linie napowietrzne ze względu na dużą powierzchnię przewodzącą. GIL jest najlepszy dla wysokich napięć. W niniejszym artykule przedstawiono symulację skutków uderzenia pioruna w hybrydową linię przesyłową 400 kV zlokalizowaną w Wilaya, Setif w północnej Algierii w przypadku braku i obecności ograniczników liniowych i ograniczników GIL. Wyniki tego artykułu mogą stanowić bogate i cenne teoretyczne odniesienie do modelowania symulacji GIL i oceny wpływu uderzenia pioruna na hybrydowe linie napowietrzne – GIL.
Słowa kluczowe:
napowietrzna linia przesyłowa, linia w izolacji gazowej, uderzenie pioruna, ogranicznik przepięćBibliografia
Badjor M., Semenova E., Kulikov A.: Measures to protect overhead lines from ac contact network. Energy Systems 7, 2022, 38–45 [https://doi.org/10.34031/es.2022.1.004].
DOI: https://doi.org/10.34031/es.2022.1.004
Google Scholar
Chandrakar K., Gorayan R.: Analysis of transient enclosure voltages in GIS (EMTP simulation studies). International Journal of Research in Engineering and Technology 2, 2013, 120–125 [https://doi.org/10.15623/ijret.2013.0202006].
DOI: https://doi.org/10.15623/ijret.2013.0202006
Google Scholar
Chen G. et al.: Environment-friendly insulating gases for HVDC gas-insulated transmission lines. CSEE Journal of Power and Energy Systems 7(3), 2021, 510–529.
Google Scholar
Cheng S., Zhao Y., Xie K., Hu B.: A novel multi‐slice electromagnetic field‐circuit coupling method for transient computation of long‐distance gas‐insulated transmission lines. High Voltage, 2024, 1–13.
DOI: https://doi.org/10.1049/hve2.12420
Google Scholar
Colqui J. S. L. et al.: Implementation of Modal Domain Transmission Line Models in the ATP Software. IEEE Access 10, 2022, 15924–15934 [https://doi.org/10.1109/ACCESS.2022.3146880].
DOI: https://doi.org/10.1109/ACCESS.2022.3146880
Google Scholar
Gao K. et al.: Progress in Environment-friendly Gas-insulated Transmission Line (GIL). High Voltage Engineering 44, 2018, 3105–3113 [https://doi.org/10.13336/j.1003-6520.hve.20180925001].
Google Scholar
Gatta F. M. et al.: Single-Pole Autoreclosure in uncompensated EHV AC mixed overhead-cable lines: A parametric time-domain analysis. Electric Power Systems Research 210, 2022, 108055.
DOI: https://doi.org/10.1016/j.epsr.2022.108055
Google Scholar
Giraudet F.: Line surge arresters: applications, designs, trends, monitoring and recommendations. Conference EARTHING AFRICA 2017, South Africa.
Google Scholar
Grebović S. et al.: The principles of a new line surge arrester's transient current measurement system. Electric Power Systems Research 223, 2023, 109633.
DOI: https://doi.org/10.1016/j.epsr.2023.109633
Google Scholar
Ioannidis A. I., Datsios Z. G., Tsovilis T. E.: Estimating the shielding failure flashover rate of single-circuit overhead lines with horizontal phase configuration via stochastic lightning attachment simulations. Electric Power Systems Research 223, 2023, 109620.
DOI: https://doi.org/10.1016/j.epsr.2023.109620
Google Scholar
Koch H.: Gas Insulated Lines (GIL). Krieg T., Finn J. (eds): Substations. CIGRE Green Books. Springer, Cham. 2019 [https://doi.org/10.1007/978-3-319-49574-3_27].
DOI: https://doi.org/10.1007/978-3-319-49574-3_27
Google Scholar
Li B., Gu T., Li Z., Li B.: Fault section identification method for the UHV GIL-overhead hybrid line. The Journal of Engineering 2019(16), 2019 [https://doi.org/10.1049/joe.2018.8693].
DOI: https://doi.org/10.1049/joe.2018.8693
Google Scholar
Lin W. et al.: Evaluating the Lightning Strike Damage Tolerance for CFRP Composite Laminates Containing Conductive Nanofillers. Applied Composite Materials 29, 2022, 1537–1554 [https://doi.org/10.1007/s10443-022-10028-1].
DOI: https://doi.org/10.1007/s10443-022-10028-1
Google Scholar
Liu B. et al.: Insulation design of -800 kV gas insulation transmission line for negative ion based neutral beam injector. Fusion Engineering and Design 196, 2023, 114027.
DOI: https://doi.org/10.1016/j.fusengdes.2023.114027
Google Scholar
Montanyà J. et al.: Potential use of space-based lightning detection in electric power systems. Electric Power Systems Research 213, 2022, 108730 [https://doi.org/10.1016/j.epsr.2022.108730].
DOI: https://doi.org/10.1016/j.epsr.2022.108730
Google Scholar
Niu H. et al.: Multi-Physical Coupling Field Study of 500 kV GIL: Simulation, Characteristics, and Analysis. IEEE Access 8, 2020, 131439–131448 [https://doi.org/10.1109/ACCESS.2020.3009694].
DOI: https://doi.org/10.1109/ACCESS.2020.3009694
Google Scholar
Qiuqin S. et al.: Surge analysis for lightning strike on overhead lines of wind farm. Electric Power Systems Research 194, 2021, 107066 [https://doi.org/10.1016/j.epsr.2021.107066].
DOI: https://doi.org/10.1016/j.epsr.2021.107066
Google Scholar
Rui Q. et al.: Methods for alleviation of impacts of axial diffusion on decomposition products monitoring in gas‐insulated transmission lines. High Voltage 7, 2022, 41–51.
DOI: https://doi.org/10.1049/hve2.12130
Google Scholar
Runyu F. et al.: Very fast transient overvoltage calculation and evaluation for 500-kV gas insulated substation power substation with double circuit and long gas insulated substation busbar. IET Gener. Transm. Distrib. 17, 2023, 252–262.
DOI: https://doi.org/10.1049/gtd2.12680
Google Scholar
Sadovic S., Sadovic T.: Line Surge Arresters Applications On The Multi Circuit Overhead Lines. Journal of Energy – Energija 60, 2011, 75–80 [https://doi.org/10.37798/2011601-4265].
DOI: https://doi.org/10.37798/2011601-4265
Google Scholar
Samira B., Boumous Z., Anane Z., Nouri H.: Comparative study of 220 kV overhead transmission lines models subjected to lightning strike simulation by using electromagnetic and alternative transients program. Electrical Engineering & Electromechanics 4, 2022, 68–74 [https://doi.org/10.20998/2074-272X.2022.4.10].
DOI: https://doi.org/10.20998/2074-272X.2022.4.10
Google Scholar
Shakeel A., Park K., Shin K.-Y., Lee B.-W.: A Study of Fast Front Transients of an HVDC Mixed Transmission Line Exposed to Bipolar Lightning Strokes. Energies 14, 2021, 2896 [https://doi.org/10.3390/en14102896].
DOI: https://doi.org/10.3390/en14102896
Google Scholar
Sieminski A., Donovan C.: Forecasting overhead distribution line failures using weather data and gradient-boosted location, scale, and shape models. 2022 [https://doi.org/10.48550/arXiv.2209.03495].
Google Scholar
Vendin S., Solov’ev S., Kilin S., Yakovlev A.: Modeling and Analysis of Lightning Protection in an Emergency Situation of a Lightning Strike. Elektrotekhnologii i elektrooborudovanie v APK 3, 2021, 37–47 [https://doi.org/10.22314/2658-4859-2021-68-3-37-47].
DOI: https://doi.org/10.22314/2658-4859-2021-68-3-37-47
Google Scholar
Wenjia X., Xiang Z., Qiyan M.: Research on Induced Voltage and Current for Hybrid Transmission System Composed of GIL and Overhead Line. International Journal of Emerging Electric Power Systems 19(6), 2018, 20180108 [https://doi.org/10.1515/ijeeps-2018-0108].
DOI: https://doi.org/10.1515/ijeeps-2018-0108
Google Scholar
Autorzy
Samira Boumousboumous@yahoo.fr
Mohamed Cherif Messaidia University, Electrical Engineering Department, Laboratory of Electrical Engineering and Renewable Energy Algieria
https://orcid.org/0000-0003-2213-6542
Autorzy
Zouhir BoumousMohamed Cherif Messaidia University, Electrical Engineering Department, Laboratory of Electrical Engineering and Renewable Energy Algieria
Autorzy
Yacine DjeghaderMohamed Cherif Messaidia University, Electrical Engineering Department, Laboratory of Electrical Engineering and Renewable Energy Algieria
Statystyki
Abstract views: 138PDF downloads: 149