OCENA WYDAJNOŚCI OBRAZÓW TERMOGRAFICZNYCH DO PRZEWIDYWANIA STOPNIA GUZA PIERSI PRZY UŻYCIU DCNN

Zakaryae Khomsi

zakaryae_khomsi@um5.ac.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Maroko)
https://orcid.org/0000-0003-2321-9622

Mohamed El Fezazi


Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Maroko)
https://orcid.org/0000-0001-6072-325X

Achraf Elouerghi


Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Maroko)
https://orcid.org/0000-0001-5880-0172

Larbi Bellarbi


Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Maroko)

Abstrakt

Wczesny i zaawansowany rak piersi stanowią odrębne procesy chorobowe. Dlatego też identyfikacja stadium nowotworu jest kluczową procedurą dla optymalizacji skuteczności leczenia. Termografia piersi wykazała znaczny postęp w nieinwazyjnym wykrywaniu nowotworów. Jednak dokładne określenie stopnia zaawansowania nowotworu na podstawie rozkładu temperatury stanowi trudne zadanie, głównie ze względu na niedobór obrazów termicznych oznaczonych stopniem zaawansowania nowotworu. W niniejszej pracy zaproponowano podejście uczenia transferowego oparte na głębokiej konwolucyjnej sieci neuronowej (DCNN) z obrazami termicznymi do przewidywania stadium guza piersi. Różne scenariusze stadium nowotworu, w tym guzy wczesne i zaawansowane, są osadzone w trójwymiarowym modelu piersi przy użyciu metody elementów skończonych (MES) dostępnej w oprogramowaniu COMSOL Multiphysics. Pozwala to na wygenerowanie zestawu danych obrazów termicznych do trenowania modelu DCNN. Przeprowadzono szczegółowe badanie procesu dostrajania hiperparametrów w celu wybrania optymalnego modelu predykcyjnego. W związku z tym różne wskaźniki oceny, w tym dokładność, czułość i swoistość, są obliczane przy użyciu macierzy pomyłek. Wyniki pokazują zdolność modelu DCNN do dokładnego przewidywania stadium guza piersi na podstawie obrazów termograficznych, z dokładnością 98,2%, czułością 98,8% i swoistością 97,7%. Badanie to wskazuje na obiecujący potencjał obrazów termograficznych w ulepszaniu algorytmów głębokiego uczenia się w celu nieinwazyjnego przewidywania stadium guza piersi.


Słowa kluczowe:

analiza obrazu, klasyfikacja, przewidywanie nowotworów, uczenie transferowe, termografia

Ahlawat P. et al.: Tumour Volumes: Predictors of Early Treatment Response in Locally Advanced Head and Neck Cancers Treated with Definitive Chemoradiation. Reports of Practical Oncology and Radiotherapy 21(5), 2016, 419–426 [https://doi.org/10.1016/j.rpor.2016.04.002].
  Google Scholar

Alghamdi S. et al.: The Impact of Reporting Tumor Size in Breast Core Needle Biopsies on Tumor Stage: A Retrospective Review of Five Years of Experience at a Single Institution. Annals of Diagnostic Pathology, vol. 38, 2019, 26–28 [https://doi.org/10.1016/j.anndiagpath.2018.10.002].
  Google Scholar

De Miglio M. R., Mello-Thoms C.: Editorial: Reviews in Breast Cancer. Frontiers in Oncology 13, 2023, 1161583
  Google Scholar

[https://doi.org/10.3389/fonc.2023.1161583].
  Google Scholar

Farhangi F.: Investigating the Role of Data Preprocessing, Hyperparameters Tuning, and Type of Machine Learning Algorithm in the Improvement of Drowsy EEG Signal Modeling. Intelligent Systems with Applications 15, 2022, 200100 [https://doi.org/10.1016/j.iswa.2022.200100].
  Google Scholar

Gavazzi S. et al.: Advanced Patient-Specific Hyperthermia Treatment Planning. International Journal of Hyperthermia 37(1), 2020, 992–1007 [https://doi.org/10.1080/02656736.2020.1806361].
  Google Scholar

Giuliano A. E. et al.: Breast Cancer-Major Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA: A Cancer Journal for Clinicians 67(4), 2017, 290–303 [https://doi.org/10.3322/caac.21393].
  Google Scholar

Horvath L. E. et al.: The Relationship between Tumor Size and Stage in Early versus Advanced Ovarian Cancer. Medical Hypotheses 80(5), 2013, 684–687 [https://doi.org/10.1016/j.mehy.2013.01.027].
  Google Scholar

Huang W. et al.: Wearable Health Monitoring System Based on Layered 3D-Mobilenet. Procedia Computer Science 202, 2022, 373–378 [https://doi.org/10.1016/j.procs.2022.04.051].
  Google Scholar

Jacob G. et al.: Breast Cancer Detection: A Comparative Review on Passive and Active Thermography. Infrared Physics and Technology 134, 2023, 104932 [https://doi.org/10.1016/j.infrared.2023.104932].
  Google Scholar

Jones S. C. et al.: Australian Women’s Perceptions of Breast Cancer Risk Factors and the Risk of Developing Breast Cancer. Women’s Health Issues 21(5), 2011, 353–360 [https://doi.org/10.1016/j.whi.2011.02.004].
  Google Scholar

Kandlikar S. G. et al.: Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions. International Journal of Heat and Mass Transfer 108, 2017, 2303–2320 [https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086].
  Google Scholar

Khomsi Z. et al.: Towards Development of Synthetic Data in Surface Thermography to Enable Deep Learning Models for Early Breast Tumor Prediction. Masrour T. et al. (eds): Artificial Intelligence and Industrial Applications. Springer Cham, Switzerland, 2023, 356–365 [https://doi.org/10.1007/978-3-031-43520-1_30].
  Google Scholar

Lu S. Y. et al.: A Classification Method for Brain MRI via MobileNet and Feedforward Network with Random Weights. Pattern Recognition Letters 140, 2020, 252–260 [https://doi.org/10.1016/j.patrec.2020.10.017].
  Google Scholar

Magario M. B. et al.: Mammography Coverage and Tumor Stage in the Opportunistic Screening Context. Clinical Breast Cancer 19(6), 2019, 456–459 [https://doi.org/10.1016/j.clbc.2019.04.014].
  Google Scholar

Muruganandam S. et al.: A Deep Learning Based Feed Forward Artificial Neural Network to Predict the K-Barriers for Intrusion Detection Using a Wireless Sensor Network. Measurement: Sensors 25, 2023, 100613 [https://doi.org/10.1016/j.measen.2022.100613].
  Google Scholar

Ragab M. et al.: Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma. Biology 10(12), 2021, 1–16 [https://doi.org/10.3390/biology10121259].
  Google Scholar

Rahman M. H. et al.: Real-Time Face Mask Position Recognition System Based on MobileNet Model. Smart Health 28, 2023, 100382 [https://doi.org/10.1016/j.smhl.2023.100382].
  Google Scholar

Sardanelli F., Helbich T. H.: Mammography: EUSOBI Recommendations for Women’s Information. Insights into Imaging 3(1), 2012, 7–10 [https://doi.org/10.1007/s13244-011-0127-y].
  Google Scholar

Wang H. et al.: A Model for Detecting Safety Hazards in Key Electrical Sites Based on Hybrid Attention Mechanisms and Lightweight Mobilenet. Energy Reports 7, 2021, 716–724 [https://doi.org/10.1016/j.egyr.2021.09.200].
  Google Scholar

Zhu D. et al.: Efficient Precision-Adjustable Architecture for Softmax Function in Deep Learning. IEEE Transactions on Circuits and Systems II: Express Briefs 67(12), 2020, 3382–3386 [https://doi.org/10.1109/TCSII.2020.3002564].
  Google Scholar


Opublikowane
2024-03-31

Cited By / Share

Khomsi, Z., El Fezazi, M., Elouerghi, A., & Bellarbi, L. (2024). OCENA WYDAJNOŚCI OBRAZÓW TERMOGRAFICZNYCH DO PRZEWIDYWANIA STOPNIA GUZA PIERSI PRZY UŻYCIU DCNN. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(1), 99–104. https://doi.org/10.35784/iapgos.5555

Autorzy

Zakaryae Khomsi 
zakaryae_khomsi@um5.ac.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Maroko
https://orcid.org/0000-0003-2321-9622

Autorzy

Mohamed El Fezazi 

Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Maroko
https://orcid.org/0000-0001-6072-325X

Autorzy

Achraf Elouerghi 

Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Maroko
https://orcid.org/0000-0001-5880-0172

Autorzy

Larbi Bellarbi 

Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Maroko

Statystyki

Abstract views: 150
PDF downloads: 122


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.