SYSTEM INFORMACYJNY DO WYKRYWANIA PARAMETRÓW NIEBEZPIECZNYCH OBIEKTÓW PRZEMYSŁOWYCH NA PODSTAWIE TECHNOLOGII GEOINFORMACYJNYCH

Oleg Barabahs

bar64@ukr.net
State University of Telecommunications, Kyiv, Ukraine (Ukraina)
https://orcid.org/0000-0003-1715-0761

Olha Svynchuk


National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» (Ukraina)
https://orcid.org/0000-0001-9032-6335

Olena Bandurka


National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» (Ukraina)
https://orcid.org/0009-0007-2217-7834

Oleh Ilin


State University of Information and Communication Technologies (Ukraina)

Abstrakt

Z rozwojem przemysłu wzrasta znaczenie problemu bezpieczeństwa ekologicznego i potrzeba doskonalenia systemów informacyjnych do jego monitorowania i analizy. W obecnych warunkach istnieje niedostatek takich systemów, które mogłyby jakościowo i dostępnie informować społeczeństwo o stanie środowiska, przeprowadzać analizę dynamiki wskaźników ekologicznych oraz oceniać regionalne różnice w tej dziedzinie. Celem niniejszego badania jest opracowanie systemu informacyjnego do monitorowania stanu ekologicznego obszaru kraju na podstawie technologii geoinformacyjnych z uwzględnieniem emisji substancji zanieczyszczających. Wspomniany system jest rozważany jako wieloregionalny i skierowany na monitorowanie stanu ekologicznego strefy przemysłowej. Obejmuje on moduł geograficzny do określania lokalizacji użytkownika i wyświetlania informacji zgodnie z tą lokalizacją. Ponadto system regularnie aktualizuje dane dotyczące niebezpiecznych przedsiębiorstw i informuje społeczeństwo w przypadku wystąpienia sytuacji nadzwyczajnych.


Słowa kluczowe:

system informacyjny, technologie geoinformacyjne, architektura oprogramowania, analiza klastrów, odporność funkcjonalna

[1] Arsirii O. O., Ivanov O. V., Smyk S. Yu.: Risk zones from the filling stations modelling with application of geoinformation technology. Herald of Advanced Information Technology 4(1), 2021, 84–95 [https://doi.org/10.15276/hait.01.2021.8].
DOI: https://doi.org/10.15276/hait.01.2021.8   Google Scholar

[2] Barabash O. et al.: Method of identification of tree species composition of forests on the basis of geographic information database. Advanced Information Systems 6(4), 2022, 5–10 [https://doi.org/10.20998/2522-9052.2022.4.01].
DOI: https://doi.org/10.20998/2522-9052.2022.4.01   Google Scholar

[3] Barabash O. et al.: The assessment of the quality of functional stability of the automated control system with hierarchic structure. IEEE 2nd International Conference on System Analysis & Intelligent Computing. Conference Proceedings. 05-09 October, 2020, Kyiv, Ukraine, 158–161.
  Google Scholar

[4] Barabash O., Kyrianov A.: Development of control laws of unmanned aerial vehicles for performing group flight at the straight-line horizontal flight stage. Advanced Information Systems, 7(4), 2023, 13–20 [https://doi.org/10.20998/2522-9052.2023.4.02].
DOI: https://doi.org/10.20998/2522-9052.2023.4.02   Google Scholar

[5] Deineko L. V.: Development of industry to ensure the growth and renewal of the Ukrainian economy. National Academy of Sciences of Ukraine, State University “Institute of Economics and Forecasting of the National Academy of Sciences of Ukraine”. Kyiv, 2018.
  Google Scholar

[6] Everitt B. et al.: Miscellaneous Clustering Methods. Wiley, 5th Edition, 2011.
  Google Scholar

[7] Govender P., Sivakumar V.: Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmospheric Pollution Research 11(1), 2020, 40–56 [https://doi.org/10.1016/j.apr.2019.09.009].
DOI: https://doi.org/10.1016/j.apr.2019.09.009   Google Scholar

[8] Kozulya T. V., Yemelyanova D. I.: Environmental risk at different levels of research of natural and man-made systems, information provision of its assessment. Problems of information technologies 17, 2015, 138–144.
  Google Scholar

[9] Laptiev O. et al.: The method of construction of the law of safety management of critical infrastructure objects under the conditions of external uncontrolled influences. CEUR Workshop Proceedings 3624, 2023, 291–300.
  Google Scholar

[10] Li C. et al.: Qualitative determination of volatile substances in different flavored cigarette paper by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometrics. Heliyon 9(1), e12146, 2023, 1–14 [https://doi.org/10.1016/j.heliyon.2022.e12146].
DOI: https://doi.org/10.1016/j.heliyon.2022.e12146   Google Scholar

[11] Malley C. S., Braban C. F., Heal M. R.: The application of hierarchical cluster analysis and non-negative matrix factorization to European atmospheric monitoring site classification. Atmospheric Research 138, 2014, 30–40 [https://doi.org/10.1016/j.atmosres.2013.10.019].
DOI: https://doi.org/10.1016/j.atmosres.2013.10.019   Google Scholar

[12] Ogasawara Y., Kon M.: Two clustering methods based on the Ward's method and dendrograms with interval-valued dissimilarities for interval-valued data. International Journal of Approximate Reasoning 129, 2021, 103–121 [https://doi.org/10.1016/j.ijar.2020.11.001].
DOI: https://doi.org/10.1016/j.ijar.2020.11.001   Google Scholar

[13] Qaddoura R., Faris H., Aljarah I.: An efficient evolutionary algorithm with the nearest neighbor search technique for clustering analysis. J Ambient Intell Human Comput 12, 2021, 8387–8412 [https://doi.org/10.1007/s12652-020-02570-2].
DOI: https://doi.org/10.1007/s12652-020-02570-2   Google Scholar

[14] Radlovska K. O.: A continuously operating automated ecological and technological model of environmental monitoring to increase the level of environmental safety and develop a strategy for the sustainable development of Prykarpattia. Monitoring, modeling and forecasting of the state of the environment 1(11), 2015, 127–140.
  Google Scholar

[15] Shevchenko R. Yu.: Mobile geo-informational system of ecological monitoring of the city of Kyiv as a scientific-methodological model of prevention of risks of anthropogenic influence. Environmental sciences 2(25), 2019, 55–63 [https://doi.org/10.32846/2306-9716-2019-2-25-9].
DOI: https://doi.org/10.32846/2306-9716-2019-2-25-9   Google Scholar

[16] Shvaiko V. et al.: Methods for detecting fires in ecosystems using low-resolution space images. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 11(1), 2021, 15–19 [https://doi.org/10.35784/iapgos.2576].
DOI: https://doi.org/10.35784/iapgos.2576   Google Scholar

[17] Sobchuk V. et al.: Adaptive accumulation and diagnostic information systems of enterprises in energy and industry sectors. E3S Web of Conferences 250, 2021, 82–87 [https://doi.org/10.1051/e3sconf/202125008002].
DOI: https://doi.org/10.1051/e3sconf/202125008002   Google Scholar

[18] Svynchuk O. et al.: Development of the information system for monitoring time changes in forest plantations based on the analysis of space images. Eastern-European Journal of Enterprise Technologies 5(2/119), 2022, 31–41 [https://doi.org/10.15587/1729-4061.2022.265039].
DOI: https://doi.org/10.15587/1729-4061.2022.265039   Google Scholar

[19] Vasiutynska K., Arsirii O., Ivanov O.: Development of the method for assessing the action zones of hazards in an emergency at a city filling station using geoinformation technology. Technology Audit and Production Reserves 6(3/38), 2017, 29–38 [https://doi.org/10.15587/2312-8372.2017.119505].
DOI: https://doi.org/10.15587/2312-8372.2017.119505   Google Scholar

[20] Zhao M., Liu X.: Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety. Safety Science 87, 2016, 18–24 [https://doi.org/10.1016/j.ssci.2016.03.016].
DOI: https://doi.org/10.1016/j.ssci.2016.03.016   Google Scholar

[21] [https://minjust.gov.ua/m/samovilne-spalyuvannya-listya-ta-suhoi-travi-poza-zakonom]. (available: 11.04.2024).
  Google Scholar

[22] [https://saveecobot.com] (available: 11.04.2024).
  Google Scholar

[23] [https://asm.kyivcity.gov.ua] (available: 11.04.2024).
  Google Scholar

[24] [https://www.ksv.biz.ua/GOST/DSTY_ALL/DSTU2/dstu_7134-2009.pdf] (available: 11.04.2024).
  Google Scholar

[25] [https://www.kmu.gov.ua/npas/155861368] (available: 11.04.2024).
  Google Scholar

[26] [https://zakon.rada.gov.ua/rada/show/n0002556-00#Text]. (available: 11.04.2024).
  Google Scholar


Opublikowane
2024-09-30

Cited By / Share

Barabahs, O., Svynchuk, O., Bandurka, O., & Ilin, O. (2024). SYSTEM INFORMACYJNY DO WYKRYWANIA PARAMETRÓW NIEBEZPIECZNYCH OBIEKTÓW PRZEMYSŁOWYCH NA PODSTAWIE TECHNOLOGII GEOINFORMACYJNYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(3), 9–14. https://doi.org/10.35784/iapgos.6093

Autorzy

Oleg Barabahs 
bar64@ukr.net
State University of Telecommunications, Kyiv, Ukraine Ukraina
https://orcid.org/0000-0003-1715-0761

Autorzy

Olha Svynchuk 

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Ukraina
https://orcid.org/0000-0001-9032-6335

Autorzy

Olena Bandurka 

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Ukraina
https://orcid.org/0009-0007-2217-7834

Autorzy

Oleh Ilin 

State University of Information and Communication Technologies Ukraina

Statystyki

Abstract views: 30
PDF downloads: 7


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.