PORÓWNANIE WPŁYWU STANDARYZACJI I NORMALIZACJI DANYCH NA SKUTECZNOŚĆ KLASYFIKACJI TEKSTURY TKANKI GĄBCZASTEJ KRĘGOSŁUPA
Róża Dzierżak
r.dzierzak@pollub.plPolitechnika Lubelska (Polska)
http://orcid.org/0000-0001-5640-0204
Abstrakt
Celem niniejszego artykułu było porównanie wpływu metod wstępnego przetwarzania danych - normalizacji i standaryzacji - na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdzisięciu zdrowych pacjentów oraz pięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki tkanki (50×50 pikseli) poddano analizie tekstury w wyniku czego otrzymano deskryptory cech oparte na histogramie poziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności (od najistotniejszej do najmniej ważnej), a pięćdziesiąt pierwszych cech wykorzystano do dalszych eksperymentów. Dane zostały poddane normalizacji oraz standaryzacji, a następnie klasyfikowane przy użyciu pięciu różnych metod: naiwny klasyfikator Bayesa, maszyna wektorów wspierających, wielowarstwowe perceptrony, las losowy oraz klasyfikacji poprzez regresje. Najlepsze wyniki uzyskano dla danych na których przeprowadzono standaryzacje i poddano klasyfikacji za pomocą wielowarstwowych perceptronów. Taki algorytm postępowania pozwolił na uzyskanie wysokiej skuteczności klasyfikacji na poziomie 94,25%.
Słowa kluczowe:
analiza tekstury, standaryzacja, normalizacja, klasyfikacjaBibliografia
Budzik G., Dziubek T., Turek P.: Podstawowe czynniki wpływające na jakość obrazów tomograficznych. Problemy Nauk Stosowanych 2015, 77–84.
Google Scholar
Chen Y, Dougherty E.R.: Gray-scale morphological granulometric texture classification. Optical Engineering 33 (8)/1994, 2713–2722.
DOI: https://doi.org/10.1117/12.173552
Google Scholar
Cichy P.: Analiza tekstury obrazów cyfrowych – zastosowanie do wybranej klasy obrazów biomedycznych. Rozprawa doktorska, Politechnika Łódzka, Wydział Elektrotechniki i Elektroniki, Instytut Elektroniki, Łódź 2001.
Google Scholar
Downey P.A., Siegel M.I.: Bone Biology and the Clinical Implications for Osteoporosis. Phys Ther 86/2006, 77–91.
DOI: https://doi.org/10.1093/ptj/86.1.77
Google Scholar
Duda D., Krtowski M., Bézy-Wendling J.: Klasyfikacja tekstur w rozpoznawaniu nowotworów wątroby na podstawie serii obrazów tomograficznych. Obrazowanie Medyczne, tom 1, 2005.
Google Scholar
Duda D., Krętowski M., Bézy-Wendling J.: Ekstrakcja cech teksturalnych w klasyfikacji obrazów tomograficznych wątroby. Zeszyty Naukowe Politechniki Białostockiej, Informatyka, 2007.
Google Scholar
Dzierżak R., Omiotek Z., Tkacz E., Kępa A.: The Influence of the Normalisation of Spinal CT Images on the Significance of Textural Features in the Identification of Defects in the Spongy Tissue Structure. IBE 2018 Innovations in Biomedical Engineering, 2019, 55–66.
DOI: https://doi.org/10.1007/978-3-030-15472-1_7
Google Scholar
Giannakopoulos X., Karhunen J., Oja E.: An Experimental Comparison Of Neural ICA Algorithms. Proc. Int. Conf. on Artificial Neural Networks ICANN’98, 1998, 651–656.
DOI: https://doi.org/10.1007/978-1-4471-1599-1_99
Google Scholar
Ismail Bin M., Dauda U.: Standardization and Its Effects on K-Means Clustering Algorithm. Research Journal of Applied Sciences, Engineering and Technology 6(17)/ 2013, 3299–3303.
DOI: https://doi.org/10.19026/rjaset.6.3638
Google Scholar
Lazarek J.: Metody analizy obrazu – analiza obrazu mammograficznego na podstawie cech wyznaczonych z tekstury. Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska 4/2013, 10–13.
DOI: https://doi.org/10.5604/20830157.1121332
Google Scholar
Lee T.W., Lewicki M.S.: Unsupervised Imane Classification, Segmentation and Enhancement Using ICA Mixture Models. IEEE Transactions on Image Processing 11(3)/2002, 270-279.
DOI: https://doi.org/10.1109/83.988960
Google Scholar
Lygeros J.: A Formal Approach to Fuzzy Modelling. Proceedings of ACC, 1995, 3740–3744.
Google Scholar
Mala K., Sadasivam V.: Automatic Segmentation and Classification of Diffused Liver Diseases using Wavelet Based Texture Analysis and Neural Network. Annual IEEE INDICON Conference, 2005, 216–219.
Google Scholar
Marcus R., Feldman D., Dempster D., Luckey M., Cauley J.: Osteoporosis, 4th ed. Elsevier Academic Press, 2013.
Google Scholar
Matheron G.: Random sets and integraf geometry. Wiley, New York 1975.
Google Scholar
Nasser Y., Hassouni M., Brahim A., Toumi H., Lespessailles E., Jennane R.: Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier. Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, 1–5.
DOI: https://doi.org/10.1109/ATSIP.2017.8075537
Google Scholar
Nieniewski M., Serneels R.: Extraction of the Shape of Small Defects on the Surface of Ferrite Cores. Machine Graphics and Vision 9 (1/2)/2000, 453–462.
Google Scholar
Omiotek, Z.: Improvement of the classification quality in detection of Hashimoto’s disease with a combined classifier approach. Journal of Engineering in Medicine 231(8)/ 2017, 774–782.
DOI: https://doi.org/10.1177/0954411917702682
Google Scholar
Omiotek Z., Wójcik W.: The use of Hellwig’s method for dimension reduction in feature space of thyroid ultrasound images. Informatyka, Automatyka, Pomiary 3/2014, 14–17 [DOI: 10.5604/20830157.1121333].
DOI: https://doi.org/10.5604/20830157.1121333
Google Scholar
Reshmalakshmi C., Sasikumar M.: Trabecular bone quality metric from X-ray images for osteoporosis detection. Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), India, 2017, 1694–1697.
DOI: https://doi.org/10.1109/ICICICT1.2017.8342826
Google Scholar
Snitkowska E.: Analiza tekstur w obrazach cyfrowych i jej zastosowanie do obrazów angiograficznych, Rozprawa doktorska, Politechnika Warszawska, 2004.
Google Scholar
Strzelecki M., Materka A.: Tekstura obrazów biomedycznych. Metody analizy komputerowej. Wydawnictwo PWN, Warszawa 2017.
Google Scholar
Tadeusiewicz R., Śmietański J.: Pozyskiwanie obrazów medycznych oraz ich przetwarzanie, analiza, automatyczne rozpoznawanie i diagnostyczna interpretacja. Wydawnictwo Studenckiego Towarzystwa Naukowego, Kraków 2011.
Google Scholar
Titus A., Nehemiah H., Kannan A.: Classification of interstitial lung disease using particle swarm optimized support vector machines. International Journal of Soft Computing 10 (1)/2015, 25–36.
Google Scholar
Usman, K., Rajpoot, K.: Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Analysis and Applications 20(3)/2017, 871–881.
DOI: https://doi.org/10.1007/s10044-017-0597-8
Google Scholar
www.eletel.p.lodz.pl/programy/cost/progr_mazda.html [06.05.2018].
Google Scholar
Autorzy
Róża Dzierżakr.dzierzak@pollub.pl
Politechnika Lubelska Polska
http://orcid.org/0000-0001-5640-0204
Statystyki
Abstract views: 475PDF downloads: 273
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Róża Dzierżak, WPŁYW ANALIZY GŁÓWNYCH SKŁADOWYCH CECH TEKSTURY NA JAKOŚĆ KLASYFIKACJI OBRAZÓW TKANKI GĄBCZASTEJ , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 10 Nr 3 (2020)
- Róża Dzierżak, Magdalena Michalska, ANALIZA SKUTECZNOŚCI WYBRANYCH METOD SEGMENTACJI STRUKTUR ANATOMICZNYCH MÓZGU , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 8 Nr 2 (2018)