OKRESOWE FUNKCJE ATEB I METODA VAN DER POLA DO KONSTRUOWANIA ROZWIĄZAŃ DWUWYMIAROWYCH NIELINIOWYCH MODELI OSCYLACJI CIAŁ SPRĘŻYSTYCH

Yaroslav Romanchuk


Hetman Petro Sahaidachny National Army Academy (Ukraina)

Mariia Sokil


Lviv Polytechnic National University (Ukraina)
https://orcid.org/0000-0003-3352-2131

Leonid Polishchuk

leo.polishchuk@gmail.com
Vinnytsia National Technical University (Ukraina)
https://orcid.org/0000-0002-5916-2413

Abstrakt

W procesie eksploatacji, najprostsze elementy (zwane dalej ciałami sprężystymi) maszyn i mechanizmów pod wpływem czynników zewnętrznych i wewnętrznych wykonują złożone oscylacje – wzdłużne, zginające i skręcające w różnych kombinacjach. Ogólnie rzecz biorąc, modele matematyczne procesu takich złożonych zjawisk w ciałach sprężystych, nawet dla jednowymiarowych modeli obliczeniowych, są problemami wartości brzegowych dla układów równań różniczkowych cząstkowych. Rozważany jest dwuwymiarowy model matematyczny procesów oscylacyjnych w nieliniowym ciele sprężystym. Zaproponowano metodę konstruowania analitycznego rozwiązania odpowiednich problemów wartości brzegowych dla nieliniowych równań różniczkowych cząstkowych, która opiera się na wykorzystaniu funkcji Ateba, metody van der Pola, idei całkowania asymptotycznego oraz zasady oscylacji jednoczęstotliwościowych. Dla „niezaburzonych” analogów równań modelu uzyskano rozwiązania jednoczęstotliwościowe w postaci jawnej, a dla „zaburzonych” – analityczne zależności podstawowych parametrów procesu oscylacji od niewielkiej perturbacji. Ustalono zależność głównej częstotliwości oscylacji od amplitudy i parametru nieliniowości właściwości sprężystych w przypadku jednoczęstotliwościowych oscylacji „ruchu niezaburzonego”. Skonstruowano asymptotyczne przybliżenie rozwiązania autonomicznego problemu „zaburzonego”. Podano wykresy zmian amplitudy i częstotliwości oscylacji w zależności od wartości parametrów układu.


Słowa kluczowe:

oscylacje, nieliniowe ciała sprężyste, dwuwymiarowy model matematyczny

[1] Andrukhiv A., Huzyk N., Sokil B., Sokil M.: Methodology of investigation the dynamics of longitudinally moving systems under the action of impulse perturbations. IOP Conf. Ser.: Mater. Sci. Eng., 2023, 012005 [https://doi.org/10.1088/1757-899X/1277/1/012005].
DOI: https://doi.org/10.1088/1757-899X/1277/1/012005   Google Scholar

[2] Andrukhiv A. et al.: Methodology for increasing the efficiency of dynamic process calculations in elastic elements of complex engineering constructions. Electronics (Switzerland) 10(1), 2021, 1–20 [https://doi.org/10.3390/electronics10010040].
DOI: https://doi.org/10.3390/electronics10010040   Google Scholar

[3] Andrukhiv V. et al.: Influence of Impulse Disturbances on Oscillations of Nonlinearly. Elastic Bodies. Mathematics 9(8), 2021, 1–13 [https://doi.org/10.3390/math9080819].
DOI: https://doi.org/10.3390/math9080819   Google Scholar

[4] Chen L.-Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 2005, 91–116 [https://doi.org/10.1115/1.1849169].
DOI: https://doi.org/10.1115/1.1849169   Google Scholar

[5] Chen L.-Q., Wang B., Ding H.: Nonlinear parametric vibration of axially moving beams: asymptotic analysis and differential quadrature verification. Journal of Physics: Conference, Series 181, 2009, 1–8 [https://doi.org/10.1088/1742-6596/181/1/012008].
DOI: https://doi.org/10.1088/1742-6596/181/1/012008   Google Scholar

[6] Cveticanin L:. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration 74, 2016, 199–210.
DOI: https://doi.org/10.1016/j.jsv.2016.03.027   Google Scholar

[7] Cveticanin L.: Strong Nonlinear Oscillator – Analytical Solutions. Mathematical Engineering. Springer, 2018.
DOI: https://doi.org/10.1007/978-3-319-58826-1   Google Scholar

[8] Cveticanin L., Pogany T.: Oscillator with a sum of non-integer orders non-linearity. Journal of Applied Mathematics, 2012, 649050.
  Google Scholar

[9] Delta Function. Mathematics. [Electronic resource]. Available online: https://mathworld.wolfram.com/DeltaFunction.html (accessed on 12 June 2023).
  Google Scholar

[10] Gendelman O., Vakakis A.: FTransitions from localization to nonlocalization in strongly nonlinear damped oscillators. Chaos, Solitons and Fractals 11(10), 2000, 1535–1542.
DOI: https://doi.org/10.1016/S0960-0779(99)00076-4   Google Scholar

[11] Huzyk N. et al.: On the external and internal resonance phenomena of the elastic bodies with the complex oscillations. Mathematical modeling and computing 9(1), 2022, 152–158 [https://doi.org/10.23939/mmc2022.01.152].
DOI: https://doi.org/10.23939/mmc2022.01.152   Google Scholar

[12] Kapustyan O. V., Perestyuk M. O., Stenzhytskyi O. M.: Extreme problems: theory, examples and methods of solving. Kyiv University Publishing and Printing Center, 2019.
  Google Scholar

[13] Kharchenko E. V., Sokil M. B.: Oscillations of moving nonlinearly elastic media and the asymptotic method in their study. Scientific bulletin of the National Forestry University of Ukraine 16(1), 2006, 134–138.
  Google Scholar

[14] Myshkis A. D., Filimonov A. M.: Periodic oscillations in nonlinear one-dimensional continuous media. Proceedings of the IX International Conference on nonlinear oscillations, 1984, 274–276.
  Google Scholar

[15] Mytropolskyi Yu. O.: On construction of asymptotic solution of the perturbed Klein-Gordon equation. Ukrainian Mathematical Journal 47(9), 1995, 1378–1386.
DOI: https://doi.org/10.1007/BF01057512   Google Scholar

[16] Nazarkevych M.: Study of dependencies of Beta- and Ateb-functions. Bulletin of the Lviv Polytechnic National University 732, 2012, 207–216.
  Google Scholar

[17] Olshansky V. P., Olshansky S. V., Tyshchenko L. M.: Dynamics of dissipative oscillators. City print, Kharkiv 2016.
  Google Scholar

[18] Perestyuk M. O., Chernikova O. S.: Some modern aspects of the asymptotic of the differential equations theory with impulse action. Ukrainian Mathematical Journal 60(1), 2008, 81–90.
DOI: https://doi.org/10.1007/s11253-008-0044-5   Google Scholar

[19] Polishchuk L., Mamyrbayev O., Gromaszek K.: Mechatronic Systems II. Applications in Material Handling Processes and Robotics. Taylor & Francis Group – CRC Press, Boca Raton, London, New York, Leiden, 2021.
DOI: https://doi.org/10.1201/9781003225447   Google Scholar

[20] Polishchuk L., Bilyy O., Kharchenko Y.: Prediction of the propagation of crack-like defects in profile elements of the boom of stack discharge conveyor Eastern-European Journal of Enterprise Technologies 6(1), 2016, 44–52.
DOI: https://doi.org/10.15587/1729-4061.2016.85502   Google Scholar

[21] Shatokhin V. et al.: Vibration diagnostic of wear for cylinder-piston couples of pumps of a radial piston hydromachine, Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control, Taylor & Francis Group, CRC Press, Balkema book London, New York, 2021, 39–52.
DOI: https://doi.org/10.1201/9781003224136-4   Google Scholar

[22] Senyk P. M.: Inverse of the incomplete Beta function. Ukrainian Mathematical Journal 21(3), 1969, 325–333.
DOI: https://doi.org/10.1007/BF01085368   Google Scholar

[23] Sokil B. І.: On asymptotic expansions of a boundary value problem for a nonlinear partial differential equation]. Ukrainian Mathematical Journal 34(6), 1982, 803–805.
DOI: https://doi.org/10.1007/BF01093588   Google Scholar

[24] Sokil B. І.: About one method of constructing single-frequency solutions for a nonlinear wave equation. Ukrainian Mathematical Journal 46(6), 1994, 782–785.
DOI: https://doi.org/10.1007/BF02658188   Google Scholar

[25] Sokil B. І. et al.: Asymptotic method and wave theory of motion in studying the effect of periodic impulse forces on systems characterized by longitudinal motion velocity. Mathematical modeling and computing 9(4), 2022, 909–920.
DOI: https://doi.org/10.23939/mmc2022.04.909   Google Scholar

[26] Wójcik W, Pavlov S., Kalimoldayev M.: Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group – CRC Press, London, New York, 2021.
DOI: https://doi.org/10.1201/9781003224136   Google Scholar

[27] Zinkovskii A. et al.: Finite element model for analys of characteristics of shrouded rotor blade vibrations, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 12(4), 2022, 11–16.
DOI: https://doi.org/10.35784/iapgos.3264   Google Scholar


Opublikowane
2024-09-30

Cited By / Share

Romanchuk, Y., Sokil, M., & Polishchuk, L. (2024). OKRESOWE FUNKCJE ATEB I METODA VAN DER POLA DO KONSTRUOWANIA ROZWIĄZAŃ DWUWYMIAROWYCH NIELINIOWYCH MODELI OSCYLACJI CIAŁ SPRĘŻYSTYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(3), 15–20. https://doi.org/10.35784/iapgos.6377

Autorzy

Yaroslav Romanchuk 

Hetman Petro Sahaidachny National Army Academy Ukraina

Autorzy

Mariia Sokil 

Lviv Polytechnic National University Ukraina
https://orcid.org/0000-0003-3352-2131

Autorzy

Leonid Polishchuk 
leo.polishchuk@gmail.com
Vinnytsia National Technical University Ukraina
https://orcid.org/0000-0002-5916-2413

Statystyki

Abstract views: 44
PDF downloads: 17


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.


Inne teksty tego samego autora