Carbon Sequestration in Soil as a Sustainable Way of Greenhouse Effect Mitigation

Grażyna Żukowska


University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Poland)
https://orcid.org/0000-0002-8189-6675

Magdalena Myszura

magdalena.myszura@up.lublin.pl
University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Poland)
https://orcid.org/0000-0002-5378-924X

Magdalena Zdeb


University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Poland)
https://orcid.org/0000-0002-9337-0830

Małgorzata Pawłowska


University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Poland)
https://orcid.org/0000-0002-5976-7420

Abstract

Due to natural mechanisms of transformation the carbon compounds contained in the atmosphere into the humus, soil is an important factor controlling the concentration of atmospheric CO2. The mass of carbon contained in organic matter accumulated in the surface layer of the Earth’s crust is greater than the mass of this element in the atmosphere or biomass of all the organisms living over the globe. Over the recent years, much attention has been paid to the role of soils in limiting the reasons of climate changes, considering the possibility of increasing carbon sequestration in this matrix. This way of approaching the problem of the greenhouse effect, which does not require an involvement of complex and expensive technological solutions aimed at capturing and storing the atmospheric CO2, and additionally contributing to improving the quality of soil and water environment, and soil productivity is fully sustainable and combines the environmental, economic and social issues.


Keywords:

climate change, soil functions, carbon cycle

BALESTRINI R., LUMINI E., BORRIELLO R., BIANCIOTTO V., 2015, Plant-Soil Biota Interactions, in: Soil Microbiology, Ecology and Biochemistry (Fourth Edition), Academic Press, p. 311-338.
DOI: https://doi.org/10.1016/B978-0-12-415955-6.00011-6   Google Scholar

BANWART S.A., BERNASCONI S.M., BLUM W.E.H., DE SOUZA D.M., CHABAUX F., DUFFY C., et al., 2017, Quantifying and managing soil functions in Earth’s critical zone – combining experimentation and mathematical modelling. Soil functions in Earth’s critical zone: key results and conclusions, in: Adv. Agron., 142, p. 1-27.
DOI: https://doi.org/10.1016/bs.agron.2016.11.001   Google Scholar

BATJES N.H., 2013, Reader for the soil carbon benefits module, in: Proceedings of the ISRIC Spring School, April 22-26, 2013, Wageningen University Campus, The Netherlands, p. 1-16.
  Google Scholar

BRYANT L., STOCKWEL, R., WHITE T., 2013, Counting Cover Crops, National Wildlife Federation, Washington DC, https://grasslandoregon.com/assets/counting-cover-crops.pdf (22.05.2020).
  Google Scholar

BURRAS C.L., KIMBLE J.M., LAL R., MAUSBACH M.J., UEHARA G., CHENG H.H., KISSEL D.E., LUXMOORE R.J., RICE C.W., WILDING LP., 2001, Carbon Sequestration: Position
  Google Scholar

of the Soil Science Society of America, in: Agronomy Publications, 59, p. 1-4.
  Google Scholar

CEL W., CZECHOWSKA-KOSACKA A., ZHANG T., 2016, Sustainable mitigation of greenhouse gases emission, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 11(1), p. 173-176.
  Google Scholar

CHABBI A., RUMPEL C., KOGEL-KNABNER I., 2009, Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, in: Soil Biol. Biochem., 41, p. 256-261.
DOI: https://doi.org/10.1016/j.soilbio.2008.10.033   Google Scholar

CHRISTENSEN B.T., 1988, Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions, in: Biol. Fertil.Soils, 5, p. 304-307.
DOI: https://doi.org/10.1007/BF00262136   Google Scholar

COLLINS H.P., ELLIOTT E.T., PAUSTIAN K., BUNDY L.G., DICK W.A., HUGGINS D.R., SMUCKER A.J.M., 2000, Soil carbon pools and fluxes in long-term corn belt agroecosystems, in: Soil Biol. Biochem., 32, p. 157-68.
DOI: https://doi.org/10.1016/S0038-0717(99)00136-4   Google Scholar

CONANT R.T., RYAN M.G., ÅGREN G.I., BIRGE H.E., DAVIDSON E.A., ELIASSON P.E., et al., 2011, Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward, in: Glob. Chang. Biol., 17 (11), p. 3392-3404.
DOI: https://doi.org/10.1111/j.1365-2486.2011.02496.x   Google Scholar

CONANT R.T., PAUSTIAN K., ELLIOTT E.T., 2001, Grassland management and conversion into grassland: effects on soil carbon, in: Ecological Applications, 11, p. 343-355.
DOI: https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2   Google Scholar

CREWS T.E., RUMSEY B.E., 2017, What agriculture can learn from native ecosystems in building soil organic matter: A review, in: Sustainability, 9(4), p. 578.
DOI: https://doi.org/10.3390/su9040578   Google Scholar

CVETKOV M., ŠANTAVEC I., KOCJAN AČKO D., TAJNŠEK A., 2010, Soil organic matter content according to different management system within long-term experiment, in: Acta Agric. Slovenica, 95, p. 79-88.
DOI: https://doi.org/10.14720/aas.2010.95.1.14804   Google Scholar

DAVIDSON E.A., JANSSENS I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, in: Nature, 440(7081), p. 165-173.
DOI: https://doi.org/10.1038/nature04514   Google Scholar

DIACONO M., MONTEMURRO F., 2010, Long term effect of organic amendments on soil fertility. A Review, in: Gron. Sustain. Dev., 30, p. 411-422.
DOI: https://doi.org/10.1051/agro/2009040   Google Scholar

DIXON R.K., BROWN S., HONGHTON R.A., SOLOMON A.M., TREXLER M.C., WIŚNIEWSKI J., 1994, Carbon pools and flux of global forest ecosystems, in: Science, 263, p. 185-190.
DOI: https://doi.org/10.1126/science.263.5144.185   Google Scholar

DOBRZAŃSKI H., ZAWADZKI S. (eds.), 1995, Gleboznawstwo, 1995, PWRiL, Warszawa
  Google Scholar

DOETTERL S., SIX J., VAN OOST K., CASANOVA-KATNY A., BOUDIN M., BOECKX P., STEVENTS A., MERCKX R., CASANOVA M.A., MUÑOZ C., ZAGAL E., 2015, Soil carbon storage
  Google Scholar

controlled by interactions between geochemistry and climate, in: Nat. Geosci., 8(10), p. 780-783.
DOI: https://doi.org/10.1038/ngeo2516   Google Scholar

DORADO J., ZANCADA M.C., ALMENDROS G., LO´PEZ-FANDO C., 2003, Changes in soil properties and humic substances after long term amendments with manure and crop residues in dryland farming systems, in: Journal of Plant Nutrition and Soil Science, 166, p. 31-38.
DOI: https://doi.org/10.1002/jpln.200390009   Google Scholar

ECCP, 2003, European Climate Change Programme, Final Report of Working Group: Sinks Related to Agricultural Soils https://ec.europa.eu/clima/sites/clima/files/eccp/second/docs/finalreport_agricsoils_en.pdf (23.05.2020).
  Google Scholar

EEA 2017, Soil, land and climate change, https://www.eea.europa.eu/signals/signals-2019-content-list/articles/soil-land-and-climate-change (5.06.2020).
  Google Scholar

GOH K.M., 2004, Carbon sequestration and stabilization in soils. Implications for soil productivity and climate change, in: Soil Science and Plant Nutrition, 50(4), p. 467-476.
DOI: https://doi.org/10.1080/00380768.2004.10408502   Google Scholar

GONG W., YAN X.Y., WANG J.Y., HU T.X., GONG Y.B., 2009, Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain, in: Plant and Soil, 314, p. 67-76 https://doi.org/10.1016/s0038-0717(03)00186-x
DOI: https://doi.org/10.1007/s11104-008-9705-2   Google Scholar

GREGORICH E.G., CARTER M.R., DORAN J.W., PANKHURST C.E., DWYER L.M., 1997, Biological attributes of soil quality, in: Dev. Soil Sci., 25, p. 81-113.
DOI: https://doi.org/10.1016/S0166-2481(97)80031-1   Google Scholar

HANSEN J., KHARECHA P., SATO M., MASSONDELMOTTE V., ACKERMAN F., BEERLING D.J, et al., 2013, Assessing ‘Dangerous Climate Change’: Required reduction of carbon emissions to protect young people, future generations and nature, ed. Añel J.A., in: PLOS One, 8(12), p. 1-26.
DOI: https://doi.org/10.1371/journal.pone.0081648   Google Scholar

HINES R., 1991, On Valuing Nature. Accounting, in: Auditing & Accountability Journal, 4(3).
DOI: https://doi.org/10.1108/09513579110144802   Google Scholar

IMHOFF M.L., BOUNOUA L., RICKETTS T., LOUCKS C., HARRISS R., LAWRENCE W.T., 2004, Global patterns in human consumption of net primary production, in: Nature, 429, p. 870-873.
DOI: https://doi.org/10.1038/nature02619   Google Scholar

IPCC, 2018, Global Warming of 1.5oC. Special Report, https://www.ipcc.ch/sr15/ (12.04.2020).
  Google Scholar

IPCC, 2000, Land Use, Land-Use Change, and Forestry, eds. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verado D.V., Dokken D.J., Cambridge University Press, UK, https://ww www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (10.04.2020).
  Google Scholar

IPCC, 2013, Climat change 2013: The Physical Science Basis, http://www.climatechange2013.org/report/ (12.04.2020).
  Google Scholar

JENKINSON D. S., 1990, The turnover of organic carbon and nitrogen in soil, in: Phil. Trans. R. Soc. B, 329, p. 361-368.
DOI: https://doi.org/10.1098/rstb.1990.0177   Google Scholar

JOBBAGY E.G., JACKSON R.B., 2000, The vertical distribution of soil organic carbon and its relation to climate and vegetation, in: Ecol. Appl., 10(2), p. 423-436.
DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2   Google Scholar

KAY B.D., VANDENBYGAART A.J., 2002, Conservation tillage and depth stratification of porosity and soil organic matter, in: Soil Till. Res., 66(2), p. 107-118.
DOI: https://doi.org/10.1016/S0167-1987(02)00019-3   Google Scholar

KIRCHMANN H., HABERHAUER G., KANDELER E., SESSITSCH A., GERZABEK M.H., 2004, Effects of level and quality of organic matter input on carbon storage and biological activity in soil: synthesis of a long-term experiment, in: Global Biogeochem. Cyc., 18, p. 247-259.
DOI: https://doi.org/10.1029/2003GB002204   Google Scholar

KONG A.Y.Y., SIX J., BRYANT D.C., DENISON
  Google Scholar

R.F., VAN KESSEL C., 2005, The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems, in: Soil Sci. Soc. Am. J., 69, p. 1078-1085.
DOI: https://doi.org/10.2136/sssaj2004.0215   Google Scholar

KORSCHENS M., MULLER A., 1996, The static experiment Bad Lauchst dt. Germany, in: Evaluation of soil organic matter: models using existing datasets, eds. Powlson D.S., Smith P., Smith J.U., Nato ASI Subseries I, 38, p. 369-387.
  Google Scholar

KOVEN C.D., HUGELIUS G., LAWRENCE D.M, WIEDER W.R., 2017, Higher climatological temperature sensitivity of soil carbon in cold than warm climates, in: Nat. Clim. Chang., 7, p. 817-822
DOI: https://doi.org/10.1038/nclimate3421   Google Scholar

KUNDU S., BAHATTACHARYYA S.K.R., PRAKASH V., GHOSH B.N., GUPTA H.S., 2007, Carbon sequestration and relationship between carbon addition and storage under rainfed soyabean-wheat rotation in sandy loam soil of the Indian Himalayes, in: Soil Till. Res., 92(1-2), p. 87-95.
DOI: https://doi.org/10.1016/j.still.2006.01.009   Google Scholar

LAL R., 2004, Soil carbon sequestration to mitigate climate change, in: Geoderma, 123(1-2), p. 1-22.
DOI: https://doi.org/10.1016/j.geoderma.2004.01.032   Google Scholar

LAL R., 2005, Soil carbon sequestration in natural and managed tropical forest ecosystems, in: J Sustain For., 21, p. 1-30.
DOI: https://doi.org/10.1300/J091v21n01_01   Google Scholar

LAL R., 2008, Carbon sequestration, in: Phil Trans R Soc B, 363(1492), p. 815-830.
DOI: https://doi.org/10.1098/rstb.2007.2185   Google Scholar

LAL R., 2015, Sequestering carbon and increasing productivity by conservation agriculture, in: Journal of Soil Water Conservation, 70(3), p. 55-62.
DOI: https://doi.org/10.2489/jswc.70.3.55A   Google Scholar

LAMB D., ERSKINE P., PARROTTA J., 2005, Restoration of degraded tropical forest landscapes, in: Science, 310, p. 1628-1632.
DOI: https://doi.org/10.1126/science.1111773   Google Scholar

LEMKE R.L., VANDENBYGAART A.J., CAMPBELL C.A., LAFOND G.P., GRANT B., 2010, Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll, in: Agriculture, Ecosystems & Environment, 135, p. 42-51.
DOI: https://doi.org/10.1016/j.agee.2009.08.010   Google Scholar

LIEBIG M.A., MORGAN J.A., REEDER J.D., ELLERT B.H., GOLLANY H.T., SCHUMAN G.E., 2005, Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada., Soil Tillage Res., 83, p. 25-52.
DOI: https://doi.org/10.1016/j.still.2005.02.008   Google Scholar

LUGATO E., LEIP A., JONES A., 2018, Mitigation potential of soil carbon management overestimated by neglecting N2O emissions, in: Nature Climate Change, 8, p. 219-223.
DOI: https://doi.org/10.1038/s41558-018-0087-z   Google Scholar

MANN L.K., 1986, Changes in soil carbon storage after cultivation, in: Soil. Sci., 142, p. 279-288.
DOI: https://doi.org/10.1097/00010694-198611000-00006   Google Scholar

MAZZONCINI M., SAPKOTA T.B., BÀRBERI P., ANTICHI D., RISALITI R., 2011, Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content, in: Soil Tillage Res., 114, p. 165-174.
DOI: https://doi.org/10.1016/j.still.2011.05.001   Google Scholar

MERANTE P., DIBARI C., FERRISE R., BINDI M., LESSCHEN P.J., KUIKMAN P., SANCHEZ B., IGLESIAS A.. 2014, Report on critical low soil organic matter contents, which jeopardise good functioning of farming systems. Smart Soil Project. Sustainable farm Management Aimed at Reducing Threats to Soils under climate change, http://smartsoil.eu/fileadmin/www.smartsoil.eu/Deliverables/D2_4_SmartSoil_Final.pdf (22.04.2020).
  Google Scholar

METTING F.B., SMITH J.L., AMTHOR J.S., IZAURRALDE R.C., 2001, Science needs and new technology for increasing soil carbon sequestration, in: Climatic Change, 51, p. 11-34.
DOI: https://doi.org/10.1023/A:1017509224801   Google Scholar

MRABET R., SABER N., EL-BRAHLI A., LAHLOU S., BESSAM F., 2001, Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco, in: Soil Till. Res., 57, p. 225-235.
DOI: https://doi.org/10.1016/S0167-1987(00)00180-X   Google Scholar

NEILL C., 2011, Impact of crop residue management on soil organic matter stocks. A modelling study, in: Ecological Modelling 222(15), p. 2751-2760.
DOI: https://doi.org/10.1016/j.ecolmodel.2011.04.029   Google Scholar

OLEJNIK T., SOBIECKA E., 2017, Utilitarian technological solutions to reduce CO2 emission in the aspect of sustainable development, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 12(2), p. 173-179.
  Google Scholar

OLSON K.R., 2013, Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development, in: Geoderma, 195-196, p. 201-206.
DOI: https://doi.org/10.1016/j.geoderma.2012.12.004   Google Scholar

PAUSTIAN K., COLE C.V., SAUERBECK D., SAMPSON N., 1998, CO2 mitigation by agriculture: An overview, in: Climatic Change, 40(1), p. 135-162.
DOI: https://doi.org/10.1023/A:1005347017157   Google Scholar

PAUSTIAN K., COLLINS H.P., PAUL E.A., 1997, Management controls on soil carbon, in: Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, eds. Paul E.A., Paustian K., Elliott E.T., and Cole C.V., CRC Press, Boca Raton, Florida, USA, p. 15-49.
DOI: https://doi.org/10.1201/9780367811693-2   Google Scholar

POEPLAU C., DON A., 2015, Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, in: Agriculture Ecosystems & Environment, 200, p. 33-41.
DOI: https://doi.org/10.1016/j.agee.2014.10.024   Google Scholar

POEPLAU C., DON A., VESTERDAL L., LEIFELD J., VAN WESEMAEL B., SCHUMACHER J., GENSIOR A., 2011, Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach, in: Global Change Biology, 17, p. 2415-2427.
DOI: https://doi.org/10.1111/j.1365-2486.2011.02408.x   Google Scholar

POST W.M., KWON K.C., 2000, Soil carbon sequestration and land-use change: Processes and potential, in: Global Change Biology, 6, p. 317-327.
DOI: https://doi.org/10.1046/j.1365-2486.2000.00308.x   Google Scholar

RANAIVOSON L., NAUDIN K., RIPOCHE A., AFFHOLDER F., RABEHARISOA L., CORBEELS M., 2017, Agro-ecological functions of crop residues under conservation agriculture. A review, in: Agronomy for Sustainable Development, 37, p. 26.
DOI: https://doi.org/10.1007/s13593-017-0432-z   Google Scholar

SCHULTEN H.R., LEINWEBER P., 1991, Influence of long-term fertilization with farmyard manure on soil organic matter: Characteristics of particle-size fractions, in: Biology and Fertility of Soils, 12, p. 81-88.
DOI: https://doi.org/10.1007/BF00341480   Google Scholar

SIMON T., 2008, The influence of long-term organic and mineral fertilization on soil organic matter, in: Soil and Water Res., 3(2), p. 41-51.
DOI: https://doi.org/10.17221/21/2008-SWR   Google Scholar

SIX J., ELLIOTT E.T., PAUSTIAN K., 2000, Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under notillage agriculture, in: Soil Biol. Biochem., 32(14), p. 2099-2103.
DOI: https://doi.org/10.1016/S0038-0717(00)00179-6   Google Scholar

STOCKMANN U., ADAMS M., CRAWFORD J.W., FIELD D.J., HENAKAARCHCHIA N., JENKINS M. et al., 2013, The knowns, known unknowns and unknowns of sequestration of soil organic carbon, in: Agriculture, Ecosystems and Environment, 164, p. 80-90.
DOI: https://doi.org/10.1016/j.agee.2012.10.001   Google Scholar

STRASSMANN K.M.F., FISCHER J.G., 2008, Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity, in: Tellus B 60(4), p. 583-603.
DOI: https://doi.org/10.1111/j.1600-0889.2008.00340.x   Google Scholar

TORN M.S., TRUMBORE S.E., CHADWICK O.A., VITOUSEK P.M., HENDRICKS D.M., 1997, Mineral control of soil organic carbon storage and turnover, in: Nature, 389, p. 170-173.
DOI: https://doi.org/10.1038/38260   Google Scholar

TRIMBLE S.W., CROSSON P., 2000, U.S. soil erosion rates – myth and reality, in: Science, 289(5479), p. 248-250.
DOI: https://doi.org/10.1126/science.289.5477.248   Google Scholar

WARDLE D.A., ZACKRISSON O., HORNBERG G., GALLET C., 1997, The influence of island area on ecosystem properties, in: Science, 277, p. 1296-1299.
DOI: https://doi.org/10.1126/science.277.5330.1296   Google Scholar

WATANABE A., KAWASAKI S., KITAMURA S., YOSHIDA S., 2007, Temporal changes in humic acids in cultivated soils with continuous manure application, in: Soil Sci. Plant Nutr., 53(3), p. 535-544.
DOI: https://doi.org/10.1111/j.1747-0765.2007.00170.x   Google Scholar

WEISMEIER M., URBANSKI L., HOBLEY E., LANG B., MARIN-SPIOTTA E., et al., 2019, Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales, in: Geoderma, 333, p. 149-162.
DOI: https://doi.org/10.1016/j.geoderma.2018.07.026   Google Scholar

WEST T.O., POST W.M., 2002, Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis, in: Soil Sci. Soc. Am. J., 66(6), p. 1930-1946.
DOI: https://doi.org/10.2136/sssaj2002.1930   Google Scholar

WITTER E, MORTENSSON A.M., GARCIA F.V., 1993, Size of the microbial mass in a long-term field experiment as affected by different N fertilizers, in: Soil Biol. Biochem., 28, p. 659-669.
DOI: https://doi.org/10.1016/0038-0717(93)90105-K   Google Scholar

Download


Published
2020-07-01

Cited by

Żukowska, G., Myszura, M., Zdeb, M., & Pawłowska, M. (2020). Carbon Sequestration in Soil as a Sustainable Way of Greenhouse Effect Mitigation. Problemy Ekorozwoju, 15(2), 195–205. https://doi.org/10.35784/pe.2020.2.19

Authors

Grażyna Żukowska 

University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Poland
https://orcid.org/0000-0002-8189-6675

Authors

Magdalena Myszura 
magdalena.myszura@up.lublin.pl
University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Poland
https://orcid.org/0000-0002-5378-924X

Authors

Magdalena Zdeb 

University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Poland
https://orcid.org/0000-0002-9337-0830

Authors

Małgorzata Pawłowska 

University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Poland
https://orcid.org/0000-0002-5976-7420

Statistics

Abstract views: 28
PDF downloads: 9