A Framework for Modeling the Decarbonization of the Economy Based on Energy Innovations in the Context of Industry 5.0 and Sustainable Development: International Perspective

Maryna Kravchenko


National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute (Ukraine)
https://orcid.org/0000-0001-5405-0159

Kateryna Kopishynska

kopishynska@ukr.net
National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute (Ukraine)
https://orcid.org/0000-0002-1609-2902

Olena Trofymenko


National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute (Ukraine)
https://orcid.org/0000-0002-2339-0377

Ivan Pyshnograiev


National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute (Ukraine)
https://orcid.org/0000-0002-3346-8318

Kateryna Boiarynova


National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute (Ukraine)
https://orcid.org/0000-0001-5879-2213

Abstract

The concept of Industry 5.0 emerges as a catalyst for accelerating sustainable development across various economic sectors. This article is devoted to the development of a framework for modeling the decarbonization of the economy based on energy innovation in the context of Industry 5.0 and sustainable development. The purpose of the article is to identify the stimulating factors for increasing the level of decarbonization, which corresponds to the Global Sustainable Development Goals adopted by the UN in 2015, especially Goal 7 Affordable and Clean Energy, Goal 9 Industry, Innovation, and Infrastructure, Goal 13 Climate Action and Goal 17 Partnerships for the Goals. Approaches to the formation of Industry 5.0 indicators, taking into account indicators of sustainable development and decarbonization of the economy, in particular, the Energy Transition Index, Global Innovation Energy Index, Digital Economy and Society Index, World Energy Trilemma Index, are investigated. The choice of Industry 5.0 components with indicators for the assessment of decarbonization, taking into account the components of sustainability, resilience and human-centricity, is justified. These include Energy intensity level of primary energy; Fossil CO2 Emissions in Power Sector; Patents in Climate change mitigation technology; Research and development expenditure; Industry (including construction), value added (% of GDP); Information and communication technologies (ICTs); Knowledge workers; Human capital and research. A cluster analysis of the level of decarbonization for the 26 countries selected for the study from Europe, Asia and North America is carried out. Taking into account the factors studied, the factors influencing the level of decarbonization are identified based on multivariate regression modelling. Recommendations on accelerating the decarbonization of the economy are provided, taking into account the experience of leading countries.


Keywords:

decarbonization, energy innovations, Industry 5.0, sustainable development, multivariate regression

1. ASIF M., SEARCY C., CASTKA P., 2023, ESG and Industry 5.0: The role of technologies in enhancing ESG disclosure, Technological Forecasting and Social Change 195, https://doi.org/10.1016/j.techfore.2023.122806.
DOI: https://doi.org/10.1016/j.techfore.2023.122806   Google Scholar

2. DESI, 2022, Digital Economy and Society Index, https://digital-strategy.ec.europa.eu/en/library/digital-economy-and-society-index-desi-2022 (2.03.2024).
  Google Scholar

3. EDGAR, 2024, Emissions Database for Global Atmospheric Research, https://edgar.jrc.ec.europa.eu/ (01.02.2024).
  Google Scholar

4. EUROPEAN COMMISSION, 2021, Industry 5.0. Towards a sustainable, humancentric and resilient European industry, https://research-and-innovation.ec.europa.eu/news/all-research-and-innovation-news/industry-50-towards-more-sustainable-resilient-and-human-centric-industry-2021-01-07_en (03.01.2024).
  Google Scholar

5. EUROPEAN COMMISSION, 2023, Report on the state of the Digital Decade, https://digital-strategy.ec.europa.eu/en/library/2023-report-state-digital-decade (04.01.2024).
  Google Scholar

6. EUROPEAN COMMISSION, 2020, European Green Deal, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (01.03.2024).
  Google Scholar

7. EURPEAN COMMISSION, 2023, Report On The Stage Of The Digital Decade, https://digital-decade-desi.digital-strategy.ec.europa.eu/datasets/desi/charts (01.03.2023).
  Google Scholar

8. FROST & SULLIVAN, 2019, Industry 5.0 – Bringing Empowered Humans Back to the Shop Floor, https://www.frost.com/frost-perspectives/industry-5-0-bringing-empowered-humans-back-to-the-shop-floor/ (02.02.2024).
  Google Scholar

9. HAUBER G., 2023, Norway’s Sleipner and Snøhvit CCS: Industry models or cautionary tales?, https://ieefa.org/resources/norways-sleipner-and-snohvit-ccs-industry-models-or-cautionary-tales (05.03.2024).
  Google Scholar

10. HEMSTRÖM O., 2022, Sweden's Smart Energy Ecosystem, Business Sweden, https://www.business-sweden.com/insights/articles/swedens-smart-energy-ecosystem/ (01.03.2024).
  Google Scholar

11. HM GOVERNMENT, 2021, Net Zero Strategy: Build Back Greener, https://assets.publishing.service.gov.uk/media/6194dfa4d3bf7f0555071b1b/net-zero-strategy-beis.pdf (02.02.2024).
  Google Scholar

12. IEA, 2022, Tracking clean energy innovation: Focus on China, https://iea.blob.core.windows.net/assets/6a6f3da9-d436-4b5b-ae3b-2622425d2ae4/TrackingCleanEnergyInnovation-FocusonChina_FINAL.pdf (03.02.2024).
  Google Scholar

13. KRAVCHENKO M., TROFYMENKO O., KOPISHYNSKA K., PYSHNOGRAIEV I., 2023, Assessing the Development of Energy Innovations and Its Impact on the Sustainable Development of Countries, System Analysis and Artificial Intelligence 1170, https://doi.org/10.1007/978-3-031-37450-0_24.
DOI: https://doi.org/10.1007/978-3-031-37450-0_24   Google Scholar

14. LABANCA N., PEREIRA A. G., WATSON M., KRIEGER K., PADOVAN D., WATTS L., MOEZZI M., WALLENBORN G., WRIGHT R., LAES E., FATH B. D., RUZZENENTI F., MOOR T., BAUWENS T., MEHTA L., 2020, Transforming innovation for decarbonization? Insights from combining complex systems and social practice perspectives, Energy Research & Social Science 65, https://doi.org/10.1016/j.erss.2020.101452.
DOI: https://doi.org/10.1016/j.erss.2020.101452   Google Scholar

15. LING S., JIN S., WANG H., ZHANG Z., FENG Y., 2024, Transportation infrastructure upgrading and green development efficiency: Empirical analysis with double machine learning method, Journal of Environmental Management 358, https://doi.org/10.1016/j.jenvman.2024.120922.
DOI: https://doi.org/10.1016/j.jenvman.2024.120922   Google Scholar

16. MASOOMI B., GHASEMIAN SAHEBI I., GHOBAKHLOO M., MOSAYEBI A., 2023, Do industry 5.0 advantages address the sustainable development challenges of the renewable energy supply chain? Sustainable Production and Consumption, 43: 94-112, https://doi.org/10.1016/j.spc.2023.10.018.
DOI: https://doi.org/10.1016/j.spc.2023.10.018   Google Scholar

17. MIRALLES-QUIRÓS M. M., MIRALLES-QUIRÓS J. L., 2022, Decarbonization and the Benefits of Tackling Climate Change, Int J Environ Res Public Health 19(13): 7776, https://doi.org/10.3390/ijerph19137776.
DOI: https://doi.org/10.3390/ijerph19137776   Google Scholar

18. SLAVIC D., MARJANOVIC U., MEDIC N., SIMEUNOVIC N., RAKIC S., 2024, The Evaluation of Industry 5.0 Concepts: Social Network Analysis Approach, Appl. Sci. 14: 1291, https://doi.org/10.3390/ app14031291.
DOI: https://doi.org/10.3390/app14031291   Google Scholar

19. SMITH Ch., HART D., 2021, The 2021 Global Energy Innovation Index: National contributions to the global clean energy innovation system, Information Technology and Innovation Foundation, https://www2.itif.org/2021-global-energy-innovation-index.pdf (1.03.2024).
  Google Scholar

20. SWITZERLAND GLOBAL ENTERPRISE, 2021, Advanced Manufacturing Switzerland, https://www.greaterzuricharea.com/sites/default/files/2023-01/Factsheet%20Advanced%20Manufacturing%20Switzerland%20S-GE%202021%20%28EN%29_0.pdf (01.03.2024).
  Google Scholar

21. U.S. DEPARTMENT OF TRANSPORTATION, 2023, National Blueprint for Transportation Decarbonization, https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf (01.03.2024).
  Google Scholar

22. UNITED STATES DEPARTMENT OF STATE, 2023, National Innovation Pathway Of The United States, https://www.whitehouse.gov/wp-content/uploads/2023/04/US-National-Innovation-Pathway.pdf (03.03.2024).
  Google Scholar

23. VAN BUUREN, S., 2018, Flexible Imputation of Missing Data, Second Edition (2nd ed.), Chapman and Hall/CRC, https://doi.org/10.1201/9780429492259.
DOI: https://doi.org/10.1201/9780429492259   Google Scholar

24. VERDOLINI E., TORREGGIANI L., GIAROLA S., TAVONI M., HAFSTEAD M., ANDERSON L., 2023, Industrial Deep Decarbonization: Modeling Approaches and Data Challenges, Washington, USA.
  Google Scholar

25. WIPO, 2024, Global Innovation Index, https://www.wipo.int/global_innovation_index/en/ (01.02.2024).
  Google Scholar

26. WORLD BANK, 2024, World Bank Open Data, https://data.worldbank.org/ (01.03.2024).
  Google Scholar

27. WORLD ECONOMIC FORUM, 2023, Fostering Effective Energy Transition 2023, https://www.weforum.org/publications/fostering-effective-energy-transition-2023/ (05.01.2024).
  Google Scholar

28. WORLD ENERGY TRILEMMA INDEX, 2022, World Energy Council in partnership with Oliver Wyman, https://www.worldenergy.org/publications/entry/world-energy-trilemma-index-2022 (03.02.2024).
  Google Scholar

29. WORLD RESOURCES INSTITUTE, 2020, Climate Watch, GHG Emissions, https://climatewatchdata.org/ghg-emissions (03.03.2024).
  Google Scholar

Download


Published
2025-01-10

Cited by

Kravchenko, M., Kopishynska, K., Trofymenko, O., Pyshnograiev, I., & Boiarynova, K. (2025). A Framework for Modeling the Decarbonization of the Economy Based on Energy Innovations in the Context of Industry 5.0 and Sustainable Development: International Perspective. Problemy Ekorozwoju, 20(1), 207–220. https://doi.org/10.35784/preko.6255

Authors

Maryna Kravchenko 

National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute Ukraine
https://orcid.org/0000-0001-5405-0159

Authors

Kateryna Kopishynska 
kopishynska@ukr.net
National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute Ukraine
https://orcid.org/0000-0002-1609-2902

Authors

Olena Trofymenko 

National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute Ukraine
https://orcid.org/0000-0002-2339-0377

Authors

Ivan Pyshnograiev 

National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute Ukraine
https://orcid.org/0000-0002-3346-8318

Authors

Kateryna Boiarynova 

National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute Ukraine
https://orcid.org/0000-0001-5879-2213

Statistics

Abstract views: 53
PDF downloads: 33


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.