Relationship Between Organic Farmland Expansion and Greenhouse Gas Emissions in Europe in Implementing the Sustainable Development Goals
Article Sidebar
Open full text
Issue Vol. 20 No. 1 (2025)
-
The Journal Problemy Ekorozwoju/ Problems of Sustainable Development as a Polish Platform for International Interdisciplinary Scientific Discourse
Artur Pawłowski1-5
-
From Environmental Ethics to Sustainability Ethics
Hong Du6-14
-
The Role of Christianity in Ecological Awakening: Foundations for Christians' Sustainable Behavior Toward Nature
Ryszard Sadowski15-24
-
Gandhian Interpretation of the Bhagavad Gita: A Solution to Sustainable Living
Namarta Sharma25-33
-
Values Orientation Change – an Important Prerequisite for the Development of a Sustainable Economy
Eva Pechociakova Svitacova34-42
-
Assessing Sustainable Development Performance and Alternative Concepts in a Group of Developed Countries in Europe
Magdaléna Drastichová, Peter Filzmoser43-73
-
Resilience after COVID-19: A Global Review of Recovery Strategies and their impact on Demographic and Economic Sectors
Jhoana Romero, Monica Mesa, Cesar Minoli, Juan Aristizabal74-95
-
Digital Inequality and Sustainable Development
Pawel Rydzewski96-108
-
Digital Trade and Regional Economic Resilience: A Case Study from China
Paijie Wan, Feng He109-128
-
Examining the Relationship between Globalization and Sustainable Migration in OECD Countries
Mehmet Şükrü Nar, Mehmet Nar129-142
-
Estimating the Role of Economic Globalization, Technological Development and Household Consumption on Ecological Footprint in Visegrad Countries
Orhan Cengiz, Fatma İdil Baktemur, Meltem Canoglu143-158
-
Relationship Between Organic Farmland Expansion and Greenhouse Gas Emissions in Europe in Implementing the Sustainable Development Goals
Serhii Kozlovskyi, Ivan Zayukov, Volodymyr Kozlovskyi, Oleksandr Tregubov, Sviatoslav Storchak, Viktor Mishchenko, Ruslan Lavrov159-173
-
Spatiotemporal Distribution of the Impact of Climate Change and Human Activities on NDVI in China
Shuyi Dong, Wen Zhuang, Shuting Zhang, Shanshan Xie174-189
-
How Economic and Monetary Policy Uncertainty Affect Climate Policy Uncertainty in the United States?
Ahmet Tayfur Akcan, Muhammad Shahbaz, Cuneyt Kılıç, Hasan Kazak190-207
-
A Framework for Modeling the Decarbonization of the Economy Based on Energy Innovations in the Context of Industry 5.0 and Sustainable Development: International Perspective
Maryna Kravchenko, Kateryna Kopishynska, Olena Trofymenko, Ivan Pyshnograiev, Kateryna Boiarynova207-220
-
Assessing the Level of Energy Security of China: Evidence from TOPSIS-entropy Weight Method
Li Pan221-235
-
Sustainable Development through Geothermal Energy: Findings from Germany, Italy, Turkey, Iceland and France
Ignas Mikalauskas, Gabija Stanislovaitytė236-244
-
Impact of Climate Change on Women’s Political Empowerment: The Sustainable Development Perspective
Chun-Ling Ding, Yan Ma, Guo-Hua Ni, Chun-Ping Chang245-260
-
Women's Leadership in Accelerating Sustainable Development : Care Based Approach for Transformative Change
Purnima Lenka, Diptiranjan Khatua261-270
-
Macroeconomic and Institutional Determinants of Foreign Direct Investment in SAARC Countries
Jai Kumar, Chen Xi, Joti Kumari, Jinyan Huang271-287
-
Economic Growth and Sustainable Development in Asia: The Role of Political Institutions and Natural Resources
Li Guo, Romanus Osabohien, Armand Fréjuis Akpa Akpa, Mamdouh Abdulaziz Saleh Al-Faryan288-309
-
Impact of Multidimensional Distance on Financial Cooperation: A Case Study of China and Neighboring Countries
Fuchang Li, Han Wang, Xiaohui Hu, Wenli Ding310-328
Archives
-
Vol. 20 No. 2
2025-09-16 20
-
Vol. 20 No. 1
2025-01-10 22
-
Vol. 19 No. 2
2024-07-01 24
-
Vol. 19 No. 1
2024-01-08 27
-
Vol. 18 No. 2
2023-07-10 25
-
Vol. 18 No. 1
2023-01-01 25
-
Vol. 17 No. 2
2022-07-04 26
-
Vol. 17 No. 1
2022-01-03 28
-
Vol. 16 No. 2
2021-07-01 26
-
Vol. 16 No. 1
2021-01-04 24
Main Article Content
DOI
Authors
Abstract
The global community is endeavouring to achieve the ambitious Sustainable Development Goals. An important area of implementation of all the seventeen goals is the introduction of organic production in agriculture. This will contribute to providing the population with food; improving public health; overcoming the problems related to hunger, poverty, poor health, limited clean drinking water, energy shortages, depletion of natural resources, climate change, and pollution of both aquatic and terrestrial ecosystems. The EU-27 countries need to reduce greenhouse gas emissions to zero by 2050, which exacerbates the issue. For this reason, the paper hypothesizes that organic farmland expansion will potentially result in an increase in greenhouse gas emissions. Accordingly, the purpose of the paper is to conduct empirical research into the impact of organic farmland expansion on the increase in greenhouse gas emissions in the EU. The correlation and regression analysis based on the use of available Eurostat statistics for the period 2014-2021 for selected individual European countries demonstrated that the majority of European countries exhibit a high degree of correlation. According to data from all EU Member States (27), the relationship is strong and directly proportional. It was found that with an increase in the area of organic farmland by 1% in the EU27, greenhouse gas emissions will increase by 0.00000025 thousand tons. The calculations revealed that ceteris paribus, greenhouse gas emissions are influenced by the expansion of organic farmland by 62.4%. Among the European countries under study, similar trends are observed in Denmark, Germany, Estonia, Spain, the Netherlands, Portugal, Romania, Finland, Switzerland, and the United Kingdom. Meanwhile, in Lithuania and the Netherlands, the relationship is inversely proportional. Weak correlation, as evidenced by the calculated correlation coefficient, is observed in such European countries as Bulgaria (0.05); Poland (0.02); Slovakia (0.05). To implement the Sustainable Development Goals, it is recommended to take measures to change the culture of food consumption; to use agricultural technologies, methods, equipment, machinery and mechanisms more efficiently; and to rationally use the waste.
Keywords:
References
1. AVASILOAIEI D., CALARA M., BREZEANU P., GRUDA N., BREZEANU C., 2023, The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation, Agronomy 13(9): 2406, https://doi.org/10.3390/agronomy13092406. DOI: https://doi.org/10.3390/agronomy13092406
2. ADEWALE C., HIGGINS S., GRANATSTEIN D., STÖCKLE C.O., CARLSON B.R., ZAHER U.E., CARPENTER-BOGGS L., 2016, Identifying Hotspots in the Carbon Footprint of a Small Scale Organic Vegetable Farm, Agricultural Systems 149: 112-121, https://doi.org/10.1016/j.agsy.2016.09.004. DOI: https://doi.org/10.1016/j.agsy.2016.09.004
3. ARCIPOWSKA A., MANGAN E., WAITE R., 2019, 5 Questions About Agricultural Emissions, Answered, https://www.wri.org/insights/5-questions-about-agricultural-emissions-answered.
4. BASNET S., WOOD A., ROOS E., JANSSON T., 2023, Organic agriculture in a low-emission world: exploring combined measures to deliver sustainable food system in Sweden, Renewable Agriculture and Food Systems 18(6517): 1-19, https://doi.org/10.1017/S1742170510000116. DOI: https://doi.org/10.1007/s11625-022-01279-9
5. BERSANI C., OUAMMI A., SACILE R., ZERO E., 2020, Model predictive control of smart greenhouses as the path towards near zero energy consumption, Energies 13(14): 3647, https://doi.org/10.3390/en13143647. DOI: https://doi.org/10.3390/en13143647
6. BHAVSAR A., HINGAR D., OSTWAL S., THAKKAR I., JADEJA S., SHAH M, 2023, The Current Scope and Stand of Carbon Capture Storage and Utilization, Case Studies in Chemical and Environmental Engineering 8: 100368, https://doi.org/10.1016/j.cscee.2023.100368. DOI: https://doi.org/10.1016/j.cscee.2023.100368
7. BOS J.F., DE HAAN J., SUKKEL W., SCHILS R.L., 2014, Energy Use and Greenhouse Gas Emissions in Organic and Conventional Farming Systems in the Netherlands, NJAS Wageningen Journal of Life Sciences 68: 61-70, https://doi.org/10.1016/j.njas.2013.12.003. DOI: https://doi.org/10.1016/j.njas.2013.12.003
8. CHATAUT G., BHATTA B., JOSHI D., SUBEDI K., KAFLE K.,2023, Greenhouse gases emission from agricultural soil: A review, Journal of Agriculture and Food Research 11: 100533, https://doi.org/10.1016/j.jafr.2023.100533. DOI: https://doi.org/10.1016/j.jafr.2023.100533
9. CHATTERJEE S., SIMONOFF. S., 2013, Handbook of Regression Analysis Copyright, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118532843/. DOI: https://doi.org/10.1002/9781118532843
10. CHIRIACÒ M. V., GROSSI G., CASTALDI S., VALENTINI R., 2017, The contribution to climate change of the organic versus conventional wheat farming: a case study on the carbon footprint of whole meal bread production in Italy, Journal of Cleaner Production 153: 309-319, https://doi.org/10.1016/j.jclepro.2017.03.111. DOI: https://doi.org/10.1016/j.jclepro.2017.03.111
11. COOPER J., BUTLER G., 2011, Life cycle analysis of greenhouse gas emissions from organic and conventional food production systems, which and without bio-energy options, NJAS Wageningen Journal of Life Sciences 3-4(58): 185-192, http://dx.doi.org/10.1016/j.njas.2011.05.002. DOI: https://doi.org/10.1016/j.njas.2011.05.002
12. D’ODORICO P., RULLI M.C., DELL’ANGELO J., DAVIS K.F., 2017, New Frontiers of Land and Water Commodification: Socio-environmental Controversies of Large-scale Land Acquisitions, Land Degradation Development 28: 2234-2244, https://doi.org/10.1002/ldr.2750. DOI: https://doi.org/10.1002/ldr.2750
13. EUROSTAT, 2022, Greenhouse gas emissions by source sector, https://ec.europa.eu/eurostat/databrowser/view/ENV_AIR_GGE/default/table?lang=en.
14. EUROSTAT, 2022, Organic crop area by agricultural production methods and crops, https://ec.europa.eu/eurostat/databrowser/view/ORG_CROPAR/default/table.
15. FILIPOVIĆ S., LIOR N., RADOVANOVIĆ M., 2022, The Green Deal Just Transition and Sustainable Development Goals Nexus, Renewable and Sustainable Energy Reviews 168: 112759, https://doi.org/10.1016/j.rser.2022.112759. DOI: https://doi.org/10.1016/j.rser.2022.112759
16. FRITSCHE U.R., EBERLE U., WIEGMANN K., SCHMIDT K., 2007, Treibhausgasemissionen Durch Erzeugung Und Verarbeitung von Lebensmitteln, Arbeitspapier, Öko-Institut eV Darmstadt: Darmstadt, Germany, https://www.oeko.de/oekodoc/328/2007-011-de.pdf.
17. GOŁASA P., WYSOKIŃSKI M., BIEŃKOWSKA-GOŁASA W., GRADZIUK P., GOLONKO M., GRADZIUK B., SIEDLECKA A., GROMADA A., 2021, Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used, Energies 14(3): 3784, https://doi.org/10.3390/en14133784. DOI: https://doi.org/10.3390/en14133784
18. GOMIERO T., PAOLETTI M.G., PIMENTEL D., 2008, Energy and Environmental Issues in Organic and Conventional Agriculture, Critical Reviews in Plant Sciences 27: 239-254, https://doi.org/10.1080/07352680802225456. DOI: https://doi.org/10.1080/07352680802225456
19. GOMIERO T., PIMENTEL D., PAOLETTI M.G., 2011, Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture, Critical Reviews in Plant Sciences 30: 95-124, https://doi.org/10.1080/07352689.2011.554355. DOI: https://doi.org/10.1080/07352689.2011.554355
20. HARTMANN J., WEST A.J., RENFORTH P., KÖHLER P., DE LA ROCHA C.L., WOLF-GLADROW D.A., DÜRR H.H., SCHEFFRAN J., 2013, Enhanced Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification, Reviews of Geophysics 51: 13-149, https://doi.org/10.1002/rog.20004. DOI: https://doi.org/10.1002/rog.20004
21. JEBARI A., PEREYRA-GODAY F., KUMAR A., COLLINS A., RIVERO M., MCAULIFFE G., 2024, Feasibility of mitigation measures for agricultural greenhouse gas emissions in the UK. A systematic review, Agronomy for Sustainable Development 2:(44), https://link.springer.com/article/10.1007/s13593-023-00938-0. DOI: https://doi.org/10.1007/s13593-023-00938-0
22. KHUDOYBERDIEV A., ULLAH I., KIM D., 2021, Optimization-assisted water supplement mechanism with energy efficiency in IoT based greenhouse, Journal of Intelligent Fuzzy Systems 40: 10163-10182, https://doi.org/10.3233/JIFS-200618. DOI: https://doi.org/10.3233/JIFS-200618
23. KOZIUK V., HAYDA Y., DLUHOPOLSKYI O., KOZLOVSKYI, S., 2020, Ecological performance: ethnic fragmentation versus governance quality and sustainable development, Problemy Ekorozwoju/ Problems of Sustainable Development 15(1): 53-64. DOI: https://doi.org/10.35784/pe.2020.1.06
24. KOZLOVSKYI S. V., 2010, Economic policy as a basic element for the mechanism of managing development factors in contemporary economic system, Actual Problems of Economics 1(103): 13-20.
25. KOZLOVSKYI S., GRYNYUK R., BALTREMUS O., IVASHCHENKO A., 2017, The methods of state regulation of sustainable development of agrarian sector in Ukraine, Problems and Perspectives in Managemen, 15(2-2): 332-343. DOI: https://doi.org/10.21511/ppm.15(2-2).2017.03
26. KOZLOVSKYI S., GRYNYUK R., BAIDALA V., BURDIAK V., BAKUN Y., 2019, Economic security management of Ukraine in conditions of European integration, Montenegrin Journal of Economics 15(3): 137-153. DOI: https://doi.org/10.14254/1800-5845/2019.15-3.10
27. KOZLOVSKYI S. V. GERASYMENKO Y. V. KOZLOVSKYI V. O., 2010, Conceptual grounds for construction of support system for investment decision-making within agroindustrial complex of Ukraine, Actual Problems of Economics 5(107): 263-275.
28. KÜSTERMANN B.; HÜLSBERGEN K.-J., 2008, Emission of Climate-Relevant Gases in Organic and Conventional Cropping Systems, Proceedings of the 16th IFOAM Organic World Congress, Modena, Italy, 16-20 June 2008, https://www.ishs.org/symposium/108.
29. MATTILA T., HAGELBERG E., SÖDERLUND S., JOONA J., 2022, How Farmers Approach Soil Carbon Sequestration? Lessons Learned from 105 Carbon-Farming Plans, Soil and Tillage Research 215: 105204, https://doi.org/10.1016/j.still.2021.105204. DOI: https://doi.org/10.1016/j.still.2021.105204
30. MARAVEAS C., KARAVAS C-S., LOUKATOS D., BARTZANAS T., ARVANITIS K., SYMEONAKI E., 2023, Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions, Agriculture 13(7): 1464, https://doi.org/10.3390/agriculture13071464. DOI: https://doi.org/10.3390/agriculture13071464
31. MCLEOD E., CHMURA G.L., BOUILLON S., SALM R., BJÖRK M., DUARTE C.M., LOVELOCK C.E., SCHLESINGER W.H., SILLIMAN B.R., 2011, A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2, Frontiers in ecology and the Environment 9: 552-560, https://doi.org/10.1890/110004. DOI: https://doi.org/10.1890/110004
32. NATURE & MORE, 2024, Sustainable Development Goals and the link to organic, https://www.natureandmore.com/en/sustainable-development-goals-and-the-link-to-organic.
33. ONDRASEK G., HORVATINEC J., KOVAČIĆ M.B., RELJIĆ M., VINCEKOVIĆ M., RATHOD S., BANDUMULA N., DHARAVATH R.; RASHID M.I., PANFILOVA O., 2023, Land Resources in Organic Agriculture: Trends and Challenges in the Twenty-First Century from Global to Croatian Contexts, Agronomy 13(6): 1544, https://doi.org/10.3390/agronomy13061544. DOI: https://doi.org/10.3390/agronomy13061544
34. OMOTOSO A., OMOTAVO A., 2024, The interplay between agriculture, greenhouse gases, and climate change in Sub-Saharan Africa, Regional Environments Change 1, https://link.springer.com/article/10.1007/s10113-023-02159-3. DOI: https://doi.org/10.1007/s10113-023-02159-3
35. PAUSTIAN K., LARSON E., KENT J., MARX E., SWAN A., 2019, Soil C Sequestration as a Biological Negative Emission Strategy, Frontiers in Climate, 1, https://collaborate.princeton.edu/en/publications/soil-c-sequestration-as-a-biological-negative-emission-strategy. DOI: https://doi.org/10.3389/fclim.2019.00008
36. POPULATION MATTERS, 2022, Our population has become so large that the Earth cannot cope, https://populationmatters.org/the-facts/?gad_source=1&gclid=EAIaIQobChMI3MSut4TYhgMVFEGRBR0EXwVZEAAYASAAEgIfwvD_BwE.
37. RAHMANN G., REZA ARDAKANI M., BÀRBERI P., BOEHM H., CANALI S., CHANDER M., DAVID W., DENGEL L., ERISMAN J.W., GALVIS-MARTINEZ A.C., 2017, Organic Agriculture 3.0. Is Innovation with Research, Organic Agriculture 7: 169-197, https://link.springer.com/article/10.1007/s13165-016-0171-5. DOI: https://doi.org/10.1007/s13165-016-0171-5
38. RITCHIE H., ROSADO, P., ROSER, M., 2022, How much, and what types of food, do countries produce across the world?, Agricultural Production, https://ourworldindata.org/agricultural-production.
39. STATISTA, 2024, Distribution of greenhouse gas emissions worldwide in 2020, by sector, 2024, https://www.statista.com/statistics/241756/proportion-of-energy-in-global-greenhouse-gas-emissions/.
40. SSSU (State Statistics Service of Ukraine, 2021, National accounts. Gross domestic product in actual prices, https://www.ukrstat.gov.ua/.
41. SELVAN T., PANMEI L., MURASING K., GULERIA V., RAMESH K., BHARDWAJ D., THAKUR C., KUMAR D., SHARMA P., UMEDSINH R., KAYALVIZHI D., DESHMUKH H., 2023, Circular economy in agriculture: unleashing the potential of integrated organic farming for food security and sustainable development, Agroecology and Ecosystem Services 7, https://doi.org/10.3389/fsufs.2023.1170380. DOI: https://doi.org/10.3389/fsufs.2023.1170380
42. SMITH P., POWLSON D.S., SMITH J.U., FALLOON P., COLEMAN K., 2000, Meeting Europe’s Climate Change Commitments: Quantitative Estimates of the Potential for Carbon Mitigation by Agriculture, Global Change. Biology 6: 525-539, https://doi.org/10.1046/j.1365-2486.2000.00331.x. DOI: https://doi.org/10.1046/j.1365-2486.2000.00331.x
43. SMITH L.G., KIRK G.J., JONES P.J., WILLIAMS A.G, 2019, The Greenhouse Gas Impacts of Converting Food Production in England and Wales to Organic Methods, Nature Communications 10: 4641, https://www.nature.com/articles/s41467-019-12622-7. DOI: https://doi.org/10.1038/s41467-019-12622-7
44. SQUALLI J., ADAMKIEWICZ G., 2018, Organic farming and greenhouse gas emissions: A longitudinal U.S. state-Level study, Journal of Cleaner Production 192(10): 30-42, https://doi.org/10.1016/j.jclepro.2018.04.160. DOI: https://doi.org/10.1016/j.jclepro.2018.04.160
45. SCIALABBA N.E.-H., MÜLLER-LINDENLAUF M., 2010, Organic Agriculture and Climate Change, Renewable Agriculture and Food Systems 25: 158-169. DOI: https://doi.org/10.1017/S1742170510000116
46. TSCHARNTKE T., GRASS I., WANGER T.C., WESTPHAL C., BATÁRY P., 2021, Beyond Organic Farming – Harnessing Biodiversity – Friendly Landscapes, Trends in Ecology & Evolution 36: 919-930, https://doi.org/10.1016/j.tree.2021.06.010. DOI: https://doi.org/10.1016/j.tree.2021.06.010
47. THE GUARDIAN, 2022, How has the world’s population grown since 1950?, https://www.theguardian.com/global-development/ng-interactive/2022/nov/14/how-has-the-worlds-population-grown-since-1950#:~:text=The%20world's%20population%20grew%20from,at%20about%2010.4%20billion%20people.
48. UNDP (United Nations Development Programme), 2024, What are the Sustainable Development Goals?, https://www.undp.org/africa/waca/i-am-sahel?gad_source=1&gclid=EAIaIQobChMI0L6n9J7VigMVEw-iAx3TLgG9EAAYASAAEgK_VfD_BwE.
49. U.S. DEPARTMENT OF AGRICULTURE, 2020, A Look at Agricultural Productivity Growth in the United States, 1948-2017, https://www.usda.gov/media/blog/2020/03/05/look-agricultural-productivity-growth-united-states-1948-2017.
50. VAN DER WERF H.M., KNUDSEN M.T., CEDERBERG C., 2020, Towards Better Representation of Organic Agriculture in Life Cycle Assessment, Nature Sustainability 3: 419-425, https://www.nature.com/articles/s41893-020-0489-6. DOI: https://doi.org/10.1038/s41893-020-0489-6
51. VERSCHUUREN J. Achieving Agricultural Greenhouse Gas Emission Reductions in the EU Post-2030: What Options Do We Have, 2022, Review of European, Comparative & International Environmental Law 31: 246-257, https://doi.org/10.1111/reel.12448. DOI: https://doi.org/10.1111/reel.12448
52. WOOD R., LENZEN M., DEY C., LUNDIE S. A., 2006, Comparative Study of Some Environmental Impacts of Conventional and Organic Farming in Australia, Agricultural Systems 89: 324=348, https://doi.org/10.1016/j.agsy.2005.09.007. DOI: https://doi.org/10.1016/j.agsy.2005.09.007
53. ZAMAN M., KLEINEIDAM K., BAKKEN L., BERENDT J., BRACKEN C., CAI Z., CHANG S., CLOUGH T., AWAR, K., DING W., DORSCH P., MARTINS M., ECKHARDT C., FIEDLER S., FROSCH T., GOOPY J., GORRES C., GUPTA A., HENJES S., MULLER C., 2021, Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques, Applications of Nuclear Techniques for GHGs, https://library.oapen.org/handle/20.500.12657/46805.
54. ZHOU M., ZHU B., WANG S., ZHU X., VEREECKEN H., BRUGGEMANN N., 2017, Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global metaanalysis, Global Change Biology 23(10), https://doi.org/10.1111/gcb.13648. DOI: https://doi.org/10.1111/gcb.13648
55. ZHOU J., LI B., XIA L., FAN C., XIONG Z., 2019, Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production, Journal of Cleaner Production 225: 984-994, https://doi.org/10.1016/j.jclepro.2019.03.191. DOI: https://doi.org/10.1016/j.jclepro.2019.03.191
56. ZIKELI S., REMBIAŁKOWSKA E., ZAŁECKA A., BADOWSKI M., 2013, Organic Farming and Organic Food Quality: Prospects and Limitations, Issues in Agroecology 85: 164, https://doi.org/10.1007/978-94-007-7454-4_3. DOI: https://doi.org/10.1007/978-94-007-7454-4_3
57. ZOOMERS A., VAN NOORLOOS F., OTSUKI K., STEEL G., VAN WESTEN G., 2017, The Rush for Land in an Urbanizing World: From Land Grabbing toward Developing Safe, Resilient, and Sustainable Cities and Landscapes, World Development 92: 242-252, https://doi.org/10.1016/j.worlddev.2016.11.016. DOI: https://doi.org/10.1016/j.worlddev.2016.11.016
Article Details
Abstract views: 481

