Optical properties of opaque and light-transmitting photovoltaic systems in architecture and their influence on architectural form
Marcin Brzezicki
Faculty of Architecture, Wroclaw University of Technology (Poland)
Magdalena Muszyńska-Łanowy
Faculty of Architecture, Wroclaw University of Technology (Poland)
Abstract
Energy-harvesting systems installed on facades have an immense influence on the perception of architecture. Technologies at various stages of advancement are currently used. Apparent (clearly visible) PV elements (e.g. old-generation applied solar panels) are being replaced by technologies that integrate those systems into the building’s envelope using miniaturization, lamination and surface mounting (e.g. BIPV). In the current application of PV, three distinct trends ca be observed: (i) the integration of energy-collecting elements into the shell and (ii) their deliberate display and use as, for example, shading, cladding or other forms of decoration, or (iii) the development of “invisible” PV systems. The research question is how the development of these systems affects architecture. Does the process of integration enrich the building’s architectural expression or negatively affect the perception of the building’s transparent surfaces?
Keywords:
PV architecture, BiPV, PV cells, façade designReferences
Alghamedi R., Vasiliev M., Nur-E-Alam, M., Alameh, K., 2014: Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows, Scientific Reports 4, Article number: 6632 (2014), For more information see: http://www.nature.com/articles/srep06632
Google Scholar
Brzezicki M., 2017: Light-transmitting energy-harvesting systems. Review of selected case-studies, Powerskin Conference Proceedings, Auer T., Knaack U., Schneider J., eds. TU Delft Open, 2017
Google Scholar
Colton R. D., 2015: Assessing Solar PV Glare In Dense Residential Neighborhoods, Solar Industry, vol. 7, 3, p. 1−6, For more information see: http://solarindustrymag.com/online/issues/SI1501/FEAT_02_Assessing-Solar-PV-Glare-In-Dense-Residential-Neighborhofods.html
Google Scholar
Cronemberger J., Almagro Corpas M., Cerón I., Caamaño-Martín E., Vega Sánchez S., 2014: BIPV technology application: Highlighting advances, tendencies and solutions through Solar Decathlon Europe houses, Energy and Buildings 83 (2014) 44−56.
Google Scholar
Farkas K. Ed., 2013: Designing Photovoltaic Systems For Architectural Integration. Criteria and guidelines for product and system developers, Report T.41.A.3/2: IEA SHC Task 41 Solar energy and Architecture 2013: Available at: http://task41.iea-shc.org/publications
Google Scholar
Guide to BIPV. Building Integrated Photovoltaics 2015: Available at: http://www.polysolar.co.uk/
Google Scholar
Lunt R.R, Bulovic V., 2011: Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Applied Physics Letters. 98 (11).
DOI: https://doi.org/10.1063/1.3567516
Google Scholar
Munari Probst M.C., Roecker C. eds., 2012: Solar energy systems in architecture. Integration criteria and guidelines, Report T.41.A.2: IEA SHC Task 41 Solar energy and Architecture, Available at: http://task41.iea-shc.org/publications
Google Scholar
Muszyńska-Łanowy M., 2010: Czarne fasady – fotowoltaiczne okładziny CIS (in Polish). Świat Szkła nr 7−8,
Google Scholar
Muszyńska-Łanowy M., 2011: Ekologia dla oczu. Estetyka powłoki BIPV (in Polish). cz.1, Świat Szkła 7−8,
Google Scholar
Polysolar 2015: Thin-film Photovoltaic Glazing for BIPV solutions, For more information see: http://www.polysolar.co.uk/Technology/thin-film
Google Scholar
Prasad D., Snow M. eds., 2005: Designing with solar power. A Source Book for Building Integrated Photovoltaics (BIPV), Earthscan, London.
Google Scholar
Richter Dahl Rocha Develops Innovative Façade for SwissTech Convention Center 2014: For more information see: http://www.archdaily.com/491135/richter-dahl-rocha-develop-innovative-facade-for-swisstech-convention-center
Google Scholar
Weller B., Hemmerle C., Jakubetz S., Unnewehr S., 2010: Detail Practice: Photovoltaics: Technology, Architecture, Installation, Edition Detail, Birkhaser Verlag, Basel, Switzerland.
DOI: https://doi.org/10.11129/detail.9783034615709
Google Scholar
Authors
Marcin BrzezickiFaculty of Architecture, Wroclaw University of Technology Poland
Authors
Magdalena Muszyńska-ŁanowyFaculty of Architecture, Wroclaw University of Technology Poland
Statistics
Abstract views: 164PDF downloads: 170