Effect of air humidity and temperature on the thermal conductivity coefficient of perlite plasters
Bartosz Szostak
b.szostak@pollub.plKatedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska (Poland)
https://orcid.org/0000-0002-2325-7103
Maciej Trochonowicz
Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska (Poland)
https://orcid.org/0000-0001-7742-7916
Paulina Hendzel
Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska (Poland)
Abstract
The purpose of this article is to present the issue related to the influence of air humidity and temperature on the value of thermal conductivity coefficient of perlite plasters. Laboratory tests made it possible to determine the value of λ coefficient depending on the test temperature and air humidity (RH). From the measurements, the sorptivity and density of the materials were determined, as well as the flexural and compressive strength of the samples.
Keywords:
perlite plasters, thermal conductivity coefficient, thermal insulationReferences
Abidi S., Nait-Ali B., Joliff Y. i Favotto C., Impact of Perlite, Vermiculite and Cement on the Thermal Conductivity of a Plaster Composite Material: Experimental and Numerical Approaches, Composites Part B: Engineering, 68 (1 styczeń 2015): 392−400. https://doi.org/10.1016/j.compositesb.2014.07.030.
DOI: https://doi.org/10.1016/j.compositesb.2014.07.030
Google Scholar
Ağbulut Ü., Mathematical calculation and experimental investigation of expanded perlite based heat insulation materials’ thermal conductivity values, Journal of Thermal Engineering 4, nr 5 (25 czerwiec 2018): 2274−86. https://doi.org/10.18186/thermal.438482.
DOI: https://doi.org/10.18186/thermal.438482
Google Scholar
Akalin O., i Elbeyli I.Y., Hydrofobizacja rozdrobnionego perlitu ekspandowanego i jego zastosowanie w zaprawach z cementu portlandzkiego, Cement Wapno Beton R. 20/82, nr 3 (2015).
Google Scholar
Berge: The Ecology of Building Materials – Google Scholar. Dostęp 22 grudzień 2022.
Google Scholar
Burriesci Nicola, Carmelo Arcoraci, PierLuigi Antonucci, i Giuseppe Polizzotti, Physico-Chemical Characterization of Perlite of Various Origins, Materials Letters, 3, nr 3 (1 styczeń 1985): 103−10. https://doi.org/10.1016/0167-577X(85)90008-4.
DOI: https://doi.org/10.1016/0167-577X(85)90008-4
Google Scholar
Chandra Satish i Leif Berntsson. Lightweight Aggregate Concrete. Elsevier, 2002.
DOI: https://doi.org/10.1016/B978-081551486-2.50009-2
Google Scholar
Demir Abdullah, An Integrated Approach in Selecting the Optimal Insulation Plaster Mortar Series, Cement Wapno Beton 27, nr 1 (2022): 32−44. https://doi.org/10.32047/CWB.2022.27.1.3.
DOI: https://doi.org/10.32047/CWB.2022.27.1.3
Google Scholar
Demirboğa Ramazan i Rüstem Gül, The Effects of Expanded Perlite Aggregate, Silica Fume and Fly Ash on the Thermal Conductivity of Lightweight Concrete, Cement and Concrete Research 33, nr 5 (1 maj 2003): 723−27. https://doi.org/10.1016/S0008-8846(02)01032-3.
DOI: https://doi.org/10.1016/S0008-8846(02)01032-3
Google Scholar
Doleželová Magdaléna, Lenka Scheinherrová, Jitka Krejsová i Alena Vimmrová, Effect of High Temperatures on Gypsum-Based Composites, Construction and Building Materials 168 (20 kwiecień 2018): 82−90. https://doi.org/10.1016/j.conbuildmat.2018.02.101.
DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.101
Google Scholar
Gandage Abhijeet S., Vinayaka Rao V.R., Sivakumar M.V.N., Vasan A., Venu M. i Yaswanth A.B., Effect of Perlite on Thermal Conductivity of Self Compacting Concrete, Procedia – Social and Behavioral Sciences, 2nd Conference of Transportation Research Group of India (2nd CTRG), 104 (2 grudzień 2013): 188−97. https://doi.org/10.1016/j.sbspro.2013.11.111.
DOI: https://doi.org/10.1016/j.sbspro.2013.11.111
Google Scholar
Govaerts Yves, Roald Hayen, Michael de Bouw, Ann Verdonck, Wendy Meulebroeck, Stijn Mertens i Yves Grégoire. Performance of a Lime-Based Insulating Render for Heritage Buildings, Construction and Building Materials 159 (20 styczeń 2018): 376−89. https://doi.org/10.1016/j.conbuildmat.2017.10.115.
DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.115
Google Scholar
van Hees Rob P.J., Silvia Naldini i Jose Delgado Rodrigues, Plasters and Renders for Salt Laden Substrates, Construction and Building Materials, Compatibility of Plasters and Renders on Salt Loaded Substrates, 23, nr 5 (1 maj 2009): 1714−18. https://doi.org/10.1016/j.conbuildmat.2008.09.009.
DOI: https://doi.org/10.1016/j.conbuildmat.2008.09.009
Google Scholar
Jakubowska Patrycja, Wpływ kruszyw lekkich – perlitu i granulatu styropianowego na właściwości zapraw budowlanych, Builder R. 24, nr 12 (2020). https://doi.org/10.5604/01.3001.0014.5276.
DOI: https://doi.org/10.5604/01.3001.0014.5276
Google Scholar
Kapeluszna Ewa, Łukasz Kotwica, Waldemar Pichór i Wiesława Nocuń-Wczelik, Cement-Based Composites with Waste Expanded Perlite – Structure, Mechanical Properties and Durability in Chloride and Sulphate Environments, Sustainable Materials and Technologies 24 (1 lipiec 2020): e00160. https://doi.org/10.1016/j.susmat.2020.e00160.
DOI: https://doi.org/10.1016/j.susmat.2020.e00160
Google Scholar
Kozioł W., Baic I. i Machniak Ł., Produkcja i zastosowanie kruszyw z wtórnych surowców odpadowych, Rocznik Ochrona Środowiska Tom 18, cz. 1 (2016). http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-25a63d8c-0359-49a0-95a5-bbefeb529a89.
Google Scholar
Maxineasa S.G., Isopescu D.N., Lupu M.L., Baciu I.-R., Pruna L. i Somacescu C., The Use of Perlite in Civil Engineering Applications, IOP Conference Series: Materials Science and Engineering 1242, nr 1 (kwiecień 2022): 012022. https://doi.org/10.1088/1757-899X/1242/1/012022.
DOI: https://doi.org/10.1088/1757-899X/1242/1/012022
Google Scholar
Meisinger Arthur C., Perlite, Bureau of Mines, U.S. Department of the Interior, 1979.
Google Scholar
Morsy M.S. i Aglan H.A., Development and Characterization of Nanostructured-Perlite-Cementitious Surface Compounds, Journal of Materials Science 42, nr 24 (1 grudzień 2007): 10188−95. https://doi.org/10.1007/s10853-007-1981-3.
DOI: https://doi.org/10.1007/s10853-007-1981-3
Google Scholar
Nastac Silviu, Petronela Nechita, Carmen Debeleac, Cristian Simionescu i Mihai Seciureanu, The Acoustic Performance of Expanded Perlite Composites Reinforced with Rapeseed Waste and Natural Polymers, Sustainability 14, nr 1 (styczeń 2022): 103. https://doi.org/10.3390/su14010103.
DOI: https://doi.org/10.3390/su14010103
Google Scholar
Rakhimbayev Sh. M., Tolypina N.M. i Khakhaleva E.N., Influence of Reactive Fillers on Concrete Corrosion Resistance, IOP Conference Series: Materials Science and Engineering 327, nr 3 (marzec 2018): 032046. https://doi.org/10.1088/1757-899X/327/3/032046.
DOI: https://doi.org/10.1088/1757-899X/327/3/032046
Google Scholar
Rashad Alaa M., A Synopsis about Perlite as Building Material – A Best Practice Guide for Civil Engineer, Construction and Building Materials 121 (15 wrzesień 2016): 338−53. https://doi.org/10.1016/j.conbuildmat.2016.06.001.
DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.001
Google Scholar
Sengul Ozkan, Senem Azizi, Filiz Karaosmanoglu i Mehmet Ali Tasdemir, Effect of Expanded Perlite on the Mechanical Properties and Thermal Conductivity of Lightweight Concrete, Energy and Buildings 43, nr 2 (1 luty 2011): 671−76. https://doi.org/10.1016/j.enbuild.2010.11.008.
DOI: https://doi.org/10.1016/j.enbuild.2010.11.008
Google Scholar
Shastri Dipendra i Ho Sung Kim, A New Consolidation Process for Expanded Perlite Particles, Construction and Building Materials 60 (16 czerwiec 2014): 1−7. https://doi.org/10.1016/j.conbuildmat.2014.02.041.
DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.041
Google Scholar
Topçu İlker Bekir i Burak Işıkdağ, Manufacture of High Heat Conductivity Resistant Clay Bricks Containing Perlite, Building and Environment 42, nr 10 (1 październik 2007): 3540−46. https://doi.org/10.1016/j.buildenv.2006.10.016.
DOI: https://doi.org/10.1016/j.buildenv.2006.10.016
Google Scholar
Trochonowicz M., Witek B., Chwiej M., Analiza wpływu wilgotności t temperatury powietrza na wartość współczynnika przewodności cieplnej λ materiałów termoizolacyjnych stosowanych wewnątrz pomieszczeń, Budownictwo i Architektura 12(4) 2013, s. 164−176.
Google Scholar
Yi Wu, Zhou Xiling, Yang Jinglin, Wang Wenxuan i Tian Tian, A Comprehensive Performance Evaluation of the Cement-Based Expanded Perlite Plastering Mortar, Science of The Total Environment 858 (1 luty 2023): 159705. https://doi.org/10.1016/j.scitotenv.2022.159705.
DOI: https://doi.org/10.1016/j.scitotenv.2022.159705
Google Scholar
Záleská Martina, Milena Pavlíková, Adam Pivák, Anna-Marie Lauermannová, Ondřej Jankovský i Zbyšek Pavlík, Lightweight Vapor-Permeable Plasters for Building Repair Detailed Experimental Analysis of the Functional Properties, Materials 14, nr 10 (styczeń 2021): 2613. https://doi.org/10.3390/ma14102613.
DOI: https://doi.org/10.3390/ma14102613
Google Scholar
Żelazowska E., Pichniarczyk P. i Najduchowska M., Lekkie kruszywa szklano-krystaliczne z surowców odpadowych dla przemysłu materiałów budowlanych, Materiały Ceramiczne, nr T. 66, nr 3 (2014): 321−30.
Google Scholar
Zemanová Lucie, Jaroslav Pokorný, Milena Pavlíková i Zbyšek Pavlík, Moisture diffusivity of natural hydraulic lime-based plasters with incorporated perlite aggregate, AIP Conference Proceedings 2293, nr 1 (24 listopad 2020): 070006. https://doi.org/10.1063/5.0027092.
DOI: https://doi.org/10.1063/5.0027092
Google Scholar
PN-EN 1015-11:2020-04, Metody badań zapraw do murów – Część 11: Określenie wytrzymałości na zginanie i ściskanie stwardniałej zaprawy.
Google Scholar
PN-EN 12524:2000, Materiały i wyroby budowlane – Właściwości cieplno-wilgotnościowe – Tabelaryczne wartości obliczeniowe.
Google Scholar
PN-EN ISO 10456:2009, Materiały i wyroby budowlane – Właściwości cieplno-wilgotnościowe – Tabelaryczne wartości obliczeniowe.
Google Scholar
Instrukcja obsługi instrumentu Laser Comp FOX 314.
Google Scholar
Authors
Bartosz Szostakb.szostak@pollub.pl
Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska Poland
https://orcid.org/0000-0002-2325-7103
Authors
Maciej TrochonowiczKatedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska Poland
https://orcid.org/0000-0001-7742-7916
Authors
Paulina HendzelKatedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska Poland
Statistics
Abstract views: 92PDF downloads: 107
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.