Effect of air humidity and temperature on the thermal conductivity coefficient of perlite plasters

Bartosz Szostak

b.szostak@pollub.pl
Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska (Poland)
https://orcid.org/0000-0002-2325-7103

Maciej Trochonowicz


Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska (Poland)
https://orcid.org/0000-0001-7742-7916

Paulina Hendzel


Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska (Poland)

Abstract

The purpose of this article is to present the issue related to the influence of air humidity and temperature on the value of thermal conductivity coefficient of perlite plasters. Laboratory tests made it possible to determine the value of λ coefficient depending on the test temperature and air humidity (RH). From the measurements, the sorptivity and density of the materials were determined, as well as the flexural and compressive strength of the samples.


Keywords:

perlite plasters, thermal conductivity coefficient, thermal insulation

Abidi S., Nait-Ali B., Joliff Y. i Favotto C., Impact of Perlite, Vermiculite and Cement on the Thermal Conductivity of a Plaster Composite Material: Experimental and Numerical Approaches, Composites Part B: Engineering, 68 (1 styczeń 2015): 392−400. https://doi.org/10.1016/j.compositesb.2014.07.030.
DOI: https://doi.org/10.1016/j.compositesb.2014.07.030   Google Scholar

Ağbulut Ü., Mathematical calculation and experimental investigation of expanded perlite based heat insulation materials’ thermal conductivity values, Journal of Thermal Engineering 4, nr 5 (25 czerwiec 2018): 2274−86. https://doi.org/10.18186/thermal.438482.
DOI: https://doi.org/10.18186/thermal.438482   Google Scholar

Akalin O., i Elbeyli I.Y., Hydrofobizacja rozdrobnionego perlitu ekspandowanego i jego zastosowanie w zaprawach z cementu portlandzkiego, Cement Wapno Beton R. 20/82, nr 3 (2015).
  Google Scholar

Berge: The Ecology of Building Materials – Google Scholar. Dostęp 22 grudzień 2022.
  Google Scholar

Burriesci Nicola, Carmelo Arcoraci, PierLuigi Antonucci, i Giuseppe Polizzotti, Physico-Chemical Characterization of Perlite of Various Origins, Materials Letters, 3, nr 3 (1 styczeń 1985): 103−10. https://doi.org/10.1016/0167-577X(85)90008-4.
DOI: https://doi.org/10.1016/0167-577X(85)90008-4   Google Scholar

Chandra Satish i Leif Berntsson. Lightweight Aggregate Concrete. Elsevier, 2002.
DOI: https://doi.org/10.1016/B978-081551486-2.50009-2   Google Scholar

Demir Abdullah, An Integrated Approach in Selecting the Optimal Insulation Plaster Mortar Series, Cement Wapno Beton 27, nr 1 (2022): 32−44. https://doi.org/10.32047/CWB.2022.27.1.3.
DOI: https://doi.org/10.32047/CWB.2022.27.1.3   Google Scholar

Demirboğa Ramazan i Rüstem Gül, The Effects of Expanded Perlite Aggregate, Silica Fume and Fly Ash on the Thermal Conductivity of Lightweight Concrete, Cement and Concrete Research 33, nr 5 (1 maj 2003): 723−27. https://doi.org/10.1016/S0008-8846(02)01032-3.
DOI: https://doi.org/10.1016/S0008-8846(02)01032-3   Google Scholar

Doleželová Magdaléna, Lenka Scheinherrová, Jitka Krejsová i Alena Vimmrová, Effect of High Temperatures on Gypsum-Based Composites, Construction and Building Materials 168 (20 kwiecień 2018): 82−90. https://doi.org/10.1016/j.conbuildmat.2018.02.101.
DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.101   Google Scholar

Gandage Abhijeet S., Vinayaka Rao V.R., Sivakumar M.V.N., Vasan A., Venu M. i Yaswanth A.B., Effect of Perlite on Thermal Conductivity of Self Compacting Concrete, Procedia – Social and Behavioral Sciences, 2nd Conference of Transportation Research Group of India (2nd CTRG), 104 (2 grudzień 2013): 188−97. https://doi.org/10.1016/j.sbspro.2013.11.111.
DOI: https://doi.org/10.1016/j.sbspro.2013.11.111   Google Scholar

Govaerts Yves, Roald Hayen, Michael de Bouw, Ann Verdonck, Wendy Meulebroeck, Stijn Mertens i Yves Grégoire. Performance of a Lime-Based Insulating Render for Heritage Buildings, Construction and Building Materials 159 (20 styczeń 2018): 376−89. https://doi.org/10.1016/j.conbuildmat.2017.10.115.
DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.115   Google Scholar

van Hees Rob P.J., Silvia Naldini i Jose Delgado Rodrigues, Plasters and Renders for Salt Laden Substrates, Construction and Building Materials, Compatibility of Plasters and Renders on Salt Loaded Substrates, 23, nr 5 (1 maj 2009): 1714−18. https://doi.org/10.1016/j.conbuildmat.2008.09.009.
DOI: https://doi.org/10.1016/j.conbuildmat.2008.09.009   Google Scholar

Jakubowska Patrycja, Wpływ kruszyw lekkich – perlitu i granulatu styropianowego na właściwości zapraw budowlanych, Builder R. 24, nr 12 (2020). https://doi.org/10.5604/01.3001.0014.5276.
DOI: https://doi.org/10.5604/01.3001.0014.5276   Google Scholar

Kapeluszna Ewa, Łukasz Kotwica, Waldemar Pichór i Wiesława Nocuń-Wczelik, Cement-Based Composites with Waste Expanded Perlite – Structure, Mechanical Properties and Durability in Chloride and Sulphate Environments, Sustainable Materials and Technologies 24 (1 lipiec 2020): e00160. https://doi.org/10.1016/j.susmat.2020.e00160.
DOI: https://doi.org/10.1016/j.susmat.2020.e00160   Google Scholar

Kozioł W., Baic I. i Machniak Ł., Produkcja i zastosowanie kruszyw z wtórnych surowców odpadowych, Rocznik Ochrona Środowiska Tom 18, cz. 1 (2016). http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-25a63d8c-0359-49a0-95a5-bbefeb529a89.
  Google Scholar

Maxineasa S.G., Isopescu D.N., Lupu M.L., Baciu I.-R., Pruna L. i Somacescu C., The Use of Perlite in Civil Engineering Applications, IOP Conference Series: Materials Science and Engineering 1242, nr 1 (kwiecień 2022): 012022. https://doi.org/10.1088/1757-899X/1242/1/012022.
DOI: https://doi.org/10.1088/1757-899X/1242/1/012022   Google Scholar

Meisinger Arthur C., Perlite, Bureau of Mines, U.S. Department of the Interior, 1979.
  Google Scholar

Morsy M.S. i Aglan H.A., Development and Characterization of Nanostructured-Perlite-Cementitious Surface Compounds, Journal of Materials Science 42, nr 24 (1 grudzień 2007): 10188−95. https://doi.org/10.1007/s10853-007-1981-3.
DOI: https://doi.org/10.1007/s10853-007-1981-3   Google Scholar

Nastac Silviu, Petronela Nechita, Carmen Debeleac, Cristian Simionescu i Mihai Seciureanu, The Acoustic Performance of Expanded Perlite Composites Reinforced with Rapeseed Waste and Natural Polymers, Sustainability 14, nr 1 (styczeń 2022): 103. https://doi.org/10.3390/su14010103.
DOI: https://doi.org/10.3390/su14010103   Google Scholar

Rakhimbayev Sh. M., Tolypina N.M. i Khakhaleva E.N., Influence of Reactive Fillers on Concrete Corrosion Resistance, IOP Conference Series: Materials Science and Engineering 327, nr 3 (marzec 2018): 032046. https://doi.org/10.1088/1757-899X/327/3/032046.
DOI: https://doi.org/10.1088/1757-899X/327/3/032046   Google Scholar

Rashad Alaa M., A Synopsis about Perlite as Building Material – A Best Practice Guide for Civil Engineer, Construction and Building Materials 121 (15 wrzesień 2016): 338−53. https://doi.org/10.1016/j.conbuildmat.2016.06.001.
DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.001   Google Scholar

Sengul Ozkan, Senem Azizi, Filiz Karaosmanoglu i Mehmet Ali Tasdemir, Effect of Expanded Perlite on the Mechanical Properties and Thermal Conductivity of Lightweight Concrete, Energy and Buildings 43, nr 2 (1 luty 2011): 671−76. https://doi.org/10.1016/j.enbuild.2010.11.008.
DOI: https://doi.org/10.1016/j.enbuild.2010.11.008   Google Scholar

Shastri Dipendra i Ho Sung Kim, A New Consolidation Process for Expanded Perlite Particles, Construction and Building Materials 60 (16 czerwiec 2014): 1−7. https://doi.org/10.1016/j.conbuildmat.2014.02.041.
DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.041   Google Scholar

Topçu İlker Bekir i Burak Işıkdağ, Manufacture of High Heat Conductivity Resistant Clay Bricks Containing Perlite, Building and Environment 42, nr 10 (1 październik 2007): 3540−46. https://doi.org/10.1016/j.buildenv.2006.10.016.
DOI: https://doi.org/10.1016/j.buildenv.2006.10.016   Google Scholar

Trochonowicz M., Witek B., Chwiej M., Analiza wpływu wilgotności t temperatury powietrza na wartość współczynnika przewodności cieplnej λ materiałów termoizolacyjnych stosowanych wewnątrz pomieszczeń, Budownictwo i Architektura 12(4) 2013, s. 164−176.
  Google Scholar

Yi Wu, Zhou Xiling, Yang Jinglin, Wang Wenxuan i Tian Tian, A Comprehensive Performance Evaluation of the Cement-Based Expanded Perlite Plastering Mortar, Science of The Total Environment 858 (1 luty 2023): 159705. https://doi.org/10.1016/j.scitotenv.2022.159705.
DOI: https://doi.org/10.1016/j.scitotenv.2022.159705   Google Scholar

Záleská Martina, Milena Pavlíková, Adam Pivák, Anna-Marie Lauermannová, Ondřej Jankovský i Zbyšek Pavlík, Lightweight Vapor-Permeable Plasters for Building Repair Detailed Experimental Analysis of the Functional Properties, Materials 14, nr 10 (styczeń 2021): 2613. https://doi.org/10.3390/ma14102613.
DOI: https://doi.org/10.3390/ma14102613   Google Scholar

Żelazowska E., Pichniarczyk P. i Najduchowska M., Lekkie kruszywa szklano-krystaliczne z surowców odpadowych dla przemysłu materiałów budowlanych, Materiały Ceramiczne, nr T. 66, nr 3 (2014): 321−30.
  Google Scholar

Zemanová Lucie, Jaroslav Pokorný, Milena Pavlíková i Zbyšek Pavlík, Moisture diffusivity of natural hydraulic lime-based plasters with incorporated perlite aggregate, AIP Conference Proceedings 2293, nr 1 (24 listopad 2020): 070006. https://doi.org/10.1063/5.0027092.
DOI: https://doi.org/10.1063/5.0027092   Google Scholar

PN-EN 1015-11:2020-04, Metody badań zapraw do murów – Część 11: Określenie wytrzymałości na zginanie i ściskanie stwardniałej zaprawy.
  Google Scholar

PN-EN 12524:2000, Materiały i wyroby budowlane – Właściwości cieplno-wilgotnościowe – Tabelaryczne wartości obliczeniowe.
  Google Scholar

PN-EN ISO 10456:2009, Materiały i wyroby budowlane – Właściwości cieplno-wilgotnościowe – Tabelaryczne wartości obliczeniowe.
  Google Scholar

Instrukcja obsługi instrumentu Laser Comp FOX 314.
  Google Scholar


Published
2022-12-27

Cited by

Szostak, B., Trochonowicz, M., & Hendzel, P. (2022). Effect of air humidity and temperature on the thermal conductivity coefficient of perlite plasters. Teka Komisji Architektury, Urbanistyki I Studiów Krajobrazowych, 18(3), 30–40. https://doi.org/10.35784/teka.3390

Authors

Bartosz Szostak 
b.szostak@pollub.pl
Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska Poland
https://orcid.org/0000-0002-2325-7103

Authors

Maciej Trochonowicz 

Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska Poland
https://orcid.org/0000-0001-7742-7916

Authors

Paulina Hendzel 

Katedra Konserwacji Zabytków, Wydział Budownictwa i Architektury, Politechnika Lubelska Poland

Statistics

Abstract views: 85
PDF downloads: 98