LIMITING VALUE OF COCKROFT-LATHAM INTEGRAL FOR COMMERCIAL PLASTICINE
Łukasz WÓJCIK
l.wojcik@pollub.plLublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, (Poland)
Zbigniew PATER
Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, (Poland)
Abstract
The paper presents the results of experimental and numerical research in the scope of commercial plasticine cracking. The purpose of the study was to determine the limit value of the Cockroft-Latham integral. The value of the integral was determined on the basis of the stretching test and computer simulations. Experimental studies utilized axially symmetrical samples made of commercial black and white wax based plasticine. Samples were cooled to 0, 5, 10, 15 and 20 °C. After the completion of experimental studies, finite element numerical simulation was performed under the conditions of 3-dimensional state of deformation in DEFORM 3D simulation software. Based on the results of experimental and numerical studies, the Cockroft-Latham limit value was calculated.
Keywords:
physical modelling, Cockroft-Latham criterion, cross-wedge rollingReferences
Altan, T., & Vazquez, V. (2000). New Concepts in die design – physical and computer modeling applications. Journalof Materials Processing Technology, 98, 212–223.
DOI: https://doi.org/10.1016/S0924-0136(99)00202-2
Google Scholar
Arikawa, T., & Kakimotoa, H. (2014). Prediction of surface crack in hot forging by numerical simulation. Procedia Engineering, 81, 474–479.
DOI: https://doi.org/10.1016/j.proeng.2014.10.025
Google Scholar
Assempour, A., & Razi, S. (2002). Determination of load and strain-stress distributions in hot closed die forging using the plasticine modeling technique. Archive of SID 2, 15, 167–172.
Google Scholar
Assempour, A., & Razi, S. (2003). Physical modeling of extrusion process. Journal of Mechanical Ennineering, 4, 61–69.
Google Scholar
Balasundar, I., Raghu, T., & Sudhakara, M. (2009). Equal channel angular pressing die to extrude a variety of materials. Materials and design, 30, 1050–1059. https://doi.org/10.1016/j.matdes.2008.06.057
DOI: https://doi.org/10.1016/j.matdes.2008.06.057
Google Scholar
Dębski, H., Lonkwic, P., & Rozylo, P. (2015). Numerical and experimental analysis of the progressive gear body with the use of finite-element method. Eksploatacja i Niezawodność –Main-tenance and Reliability, 17(4), 544–550.
DOI: https://doi.org/10.17531/ein.2015.4.9
Google Scholar
Dziubińska, A., & Gontarz, A. (2015). Limiting phenomena in a new forming process for two-rib plates. Metalurgija, 54(3), 555–558.
Google Scholar
Fuertesa, J. P., Leóna, J., Luisa, C. J., Luria, R., Puertasa, I., & Salcedoa, D. (2015). Comparative study of the damage attained with different specimens by FEM. Procedia Engineering, 132, 319–325.
DOI: https://doi.org/10.1016/j.proeng.2015.12.501
Google Scholar
Gontarz, A., Łukasik, K., & Pater, Z. (2003). Technologia kształtowania i modelowania nowego procesu wytwarzania wkrętów szynowych. Lublin: Wydawnictwa Uczelniane Politechniki Lubelskiej.
Google Scholar
Gontarz, A., & Piesiak, J. (2010). Model pękania według kryterium Cockrofta-Lathama dla stopu magnezu MA2 w warunkach kształtowania na gorąco. Obróbka Plastyczna Metali, 4, 217–227.
Google Scholar
Gontarz, A., & Winiarski, G. (2015). Numerical and experimental study of producing flanges on hollowparts by extrusion with a movable sleeve. Archives of Metallurgy and Materials, 60, 1917–1921. https://doi.org/10.1515/amm-2015-0326
DOI: https://doi.org/10.1515/amm-2015-0326
Google Scholar
Komori, K., & Mizuno, K. (2009). Study on plastic deformation in cone type rotary piercing process using model piercing mill for modeling clay. Journal of Material Processing Technology, 209, 4994–5001. https://doi.org/10.1016/j.jmatprotec.2009.01.022
DOI: https://doi.org/10.1016/j.jmatprotec.2009.01.022
Google Scholar
Kowalczyk, L. (1995). Modelowanie fizykalne procesów obróbki plastycznej. Radom: Instytut Technologi I Eksploatacji.
Google Scholar
Lis, K., Pater, Z., & Wojcik, L. (2016a). Plastometric tests for plasticine as physical modelling material. Open Engineering, 6, 653–659. https://doi.org/10.1515/eng-2016-0093
DOI: https://doi.org/10.1515/eng-2016-0093
Google Scholar
Lis, K., Pater, Z., & Wojcik, L. (2016b). Numerical analysis of a skew rolling process for producing a crankshaft preform. Open Engineering, 6, 581–584. https://doi.org/10.1515/eng-2016-0087
DOI: https://doi.org/10.1515/eng-2016-0087
Google Scholar
Moon, Y. H., & Van Tyne, C. J. (2000). Validation via FEM and plasticine modeling of upper bound criteria of a process induced side surface defect in forgings. Journal of Materials Processing Technology, 99, 185–196. https://doi.org/10.1016/S0924-0136(99)00417-3
DOI: https://doi.org/10.1016/S0924-0136(99)00417-3
Google Scholar
Pater, Z. (2010). Wartość graniczna całki Cockrofta-Lathama dla stali kolejowej gatunku R200. Hutnik, Wiadomości Hutnicze, 77(12), 702–705.
Google Scholar
Pires, F. M. A., Song, N., & Wu, S. (2016). Numerical analysis of damage evolution for materials with tension-compression asymmetry. Procedia Structural Integrity, 1, 273–280. https://doi.org/10.1016/j.prostr.2016.02.037
DOI: https://doi.org/10.1016/j.prostr.2016.02.037
Google Scholar
Rasty, J., & Sofuoglu, H. (2000). Flow behavior of plasticine used in physical modeling of metal forming process. Tribology International, 33(8), 523–529. https://doi.org/10.1016/S0301-679X(00)00092-X
DOI: https://doi.org/10.1016/S0301-679X(00)00092-X
Google Scholar
Rozylo, P., & Wojcik, L. (2017). FEM and Experimental Based Analysis of the StampingProcess of Aluminum Alloy. Adv. Sci. Technol. Res. J., 11(3), 94–101. https://doi.org/10.12913/22998624/70691
DOI: https://doi.org/10.12913/22998624/70691
Google Scholar
Świątkowski, K. (1994a). Analiza badań modelowych z użyciem materiałów modelowych z użyciem materiałów woskowych. Obróbka Plastyczna Metali, 5, 5–14.
Google Scholar
Świątkowski, K. (1994b). Własności mechaniczne woskowych materiałów modelowych. Obróbka Plastyczna, 5, 15–21.
Google Scholar
Authors
Łukasz WÓJCIKl.wojcik@pollub.pl
Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, Poland
Authors
Zbigniew PATERLublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, Poland
Statistics
Abstract views: 71PDF downloads: 10
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Tomasz BULZAK, Zbigniew PATER, Janusz TOMCZAK, NEW EXTRUSION PROCESS FOR PRODUCING TWIST DRILLS USING SPLIT DIES , Applied Computer Science: Vol. 13 No. 3 (2017)
Similar Articles
- Marcin Topczak, Małgorzata Śliwa, ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY , Applied Computer Science: Vol. 17 No. 1 (2021)
You may also start an advanced similarity search for this article.