Numerical modelling and comparison of SIF in pipelines exposed to internal pressure with longitudinal crack using XFEM method
Article Sidebar
Open full text
Issue Vol. 21 No. 1 (2025)
-
A multi-modal transformer-based model for generative visual dialog system
Ghada ELSHAMY, Marco ALFONSE, Islam HEGAZY, Mostafa AREF1-17
-
Spatial identification of manipulable objects for a bionic hand prosthesis
Yurii LOBUR, Kostiantyn VONSEVYCH, Natalia BEZUGLA18-30
-
Numerical modelling and comparison of SIF in pipelines exposed to internal pressure with longitudinal crack using XFEM method
Aya BARKAOUI, Mohammed EL MOUSSAID, Hassane MOUSTABCHIR31-43
-
Machine learning evidence towards eradication of malaria burden: A scoping review
Idara JAMES, Veronica OSUBOR44-69
-
Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis
Wissal EL HABTI, Abdellah AZMANI70-82
-
The evolution and impact of artificial intelligence in market analysis: A quantitative bibliometric exploration of the past thirty-five (35) years
Donalson WILSON, Abdellah AZMANI83-96
-
Structural equation modeling (SEM) in Jamovi: An example of analyzing the impact of factors on the innovation activity of enterprises
Assel SADENOVA, Oxana DENISSOVA, Marina KOZLOVA, Saule RAKHIMOVA, Arkadiusz GOLA, Saltanat SUIEUBAYEVA97-110
-
Enhancing intrusion detection systems: Innovative deep learning approaches using CNN, RNN, DBN and autoencoders for robust network security
Yakub HOSSAIN, Zannatul FERDOUS, Tanzillah WAHID, Md. Torikur RAHMAN, Uttam Kumar DEY, Mohammad Amanul ISLAM111-125
-
A systematic literature review of diabetes prediction using metaheuristic algorithm-based feature selection: Algorithms and challenges method
Sirmayanti, Pulung Hendro PRASTYO, Mahyati, Farhan RAHMAN126-142
-
A concept for a production flow control system toolset for discrete manufacturing of mechanical products
Jarosław CHROBOT143-153
-
Optimizing customer relationship management through AI for service effectiveness: Systematic literature review
Aji HARTANTO, VERONICA, Danang PRIHANDOKO153-163
-
LANA-YOLO: Road defect detection algorithm optimized for embedded solutions
Paweł TOMIŁO164-181
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
mohammed.elmoussaid@artsetmetiers.ma
hassane.moustabchir@usmba.ac.ma
Abstract
This study investigates the feasibility of using the extended finite element method (XFEM) in the ABAQUS commercial software, employing the maximum principal stress as the damage parameter. The primary objective of this work is to calculate the mode I stress intensity factor, a key parameter for understanding the crack initiation mechanisms in pressurized pipelines. Initially, an analysis of Von Mises stresses was conducted, followed by a theoretical calculation of stress intensity factors based on analytical methods from the literature. The results were compared with those obtained from numerical simulations using XFEM. Validation of the findings was also carried out by benchmarking them against previous studies employing the classical finite element method (FEM). Additionally, various parameters, such as internal pressure and initial crack length, were examined to assess their impact on the fatigue behavior of the structure. The numerical and analytical results demonstrated strong agreement, highlighting the robustness of the XFEM approach for the analysis of cracked structures. This study aims to enhance the understanding of longitudinal crack initiation mechanisms in pipelines to facilitate the development of a proactive maintenance strategy that ensures their durability and reliability.
Keywords:
References
Alshoaibi, A. M., & Fageehi, Y. A. (2022). A computational framework for 2D crack growth based on the adaptive finite element method. Applied Sciences, 13(1), 284. https://doi.org/10.3390/app13010284 DOI: https://doi.org/10.3390/app13010284
Azouggagh, M. (2018). Etude numerique de la propagation de fissure de fatigue dans l’acier inoxydable aust´enitique 304L. Mémoire de thése doctorat d’université Moulay Ismail.
Bartaula, D., Li, Y., Koduru, S., & Adeeb, S. (2020). Simulation of fatigue crack growth using XFEM. Pressure Vessels and Piping Conference (pp. V003T03A046). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/PVP2020-21637 DOI: https://doi.org/10.1115/PVP2020-21637
Chen, J., Zhou, X., Zhou, L., & Berto, F. (2020). Simple and effective approach to modeling crack propagation in the framework of extended finite element method. Theoretical and Applied Fracture Mechanics, 106, 102452. https://doi.org/10.1016/j.tafmec.2019.102452 DOI: https://doi.org/10.1016/j.tafmec.2019.102452
Cherepanov, G. P. (1967). The propagation of cracks in a continuous media. Journal of Applied Mathematics and Mechanics, 31(3), 503-512. https://doi.org/10.1016/0021-8928(67)90034-2 DOI: https://doi.org/10.1016/0021-8928(67)90034-2
El Fakkoussi, S., Moustabchir, H., Elkhalfi, A., & Pruncu, C. I. (2018). Application of the extended sogeometric analysis (X‐IGA) to evaluate a pipeline structure containing an external crack. Journal of Engineering, 2018(1), 4125765. https://doi.org/10.1155/2018/4125765 DOI: https://doi.org/10.1155/2018/4125765
Eshelby, J. D. (1956). The continuum theory of lattice defects. Solid State Physics, 3, 79-144. https://doi.org/10.1016/S0081-1947(08)60132-0 DOI: https://doi.org/10.1016/S0081-1947(08)60132-0
Lee, S., & Martin, D. (2016). Application of XFEM to model stationary crack and crack propagation for pressure containing subsea equipment. Pressure Vessels and Piping Conference (pp. V005T05A006). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/PVP2016-63199 DOI: https://doi.org/10.1115/PVP2016-63199
Lin, M., Li, Y., Salem, M., Cheng, J. R., Adeeb, S., & Kainat, M. (2020). A parametric study of variable crack initiation criterion in XFEM on pipeline steel. Pressure Vessels and Piping Conference (pp. PVP2020-21664). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/PVP2020-21664 DOI: https://doi.org/10.1115/1.0000024V
Lone, A. S., Harmain, G. A., & Jameel, A. (2023). Modeling of contact interfaces by penalty based enriched finite element method. Mechanics of Advanced Materials and Structures, 30(7), 1485-1503. https://doi.org/10.1080/15376494.2022.2034075 DOI: https://doi.org/10.1080/15376494.2022.2034075
Merle, R., & Dolbow, J. (2002). Solving thermal and phase change problems with the extended finite element method. Computational Mechanics, 28, 339-350. http://dx.doi.org/10.1007/s00466-002-0298-y DOI: https://doi.org/10.1007/s00466-002-0298-y
Ministère du Développement durable. (2014). Rupture d’une canalisation de transport de pétrole brut. https://www.aria.developpement-durable.gouv.fr/wp-content/files_mf/A45229_11fd_45229_stvigorddymonville_jfm.pdf
Moës, N., Gravouil, A., & Belytschko, T. (2002). Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model. International journal for numerical methods in engineering, 53(11), 2549-2568. https://doi.org/10.1002/nme.429 DOI: https://doi.org/10.1002/nme.429
Montassir, S., Yakoubi, K., Moustabchir, H., Elkhalfi, A., Rajak, D. K., & Pruncu, C. I. (2020). Analysis of crack behaviour in pipeline system using FAD diagram based on numerical simulation under XFEM. Applied Sciences, 10(17), 6129. https://doi.org/10.3390/app10176129 DOI: https://doi.org/10.3390/app10176129
Okodi, A., Lin, M., Yoosef-Ghodsi, N., Kainat, M., Hassanien, S., & Adeeb, S. (2020). Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method. International Journal of Pressure Vessels and Piping, 184, 104115. https://doi.org/10.1016/j.ijpvp.2020.104115 DOI: https://doi.org/10.1016/j.ijpvp.2020.104115
Rahman, S., Ghadiali, N., Wilkowski, G. M., Moberg, F., & Brickstad, B. (1998). Crack-opening-area analyses for circumferential through-wall cracks in pipes—Part III: off-center cracks, restraint of bending, thickness transition and weld residual stresses. International Journal of Pressure Vessels and Piping, 75(5), 397-415. https://doi.org/10.1016/S0308-0161(97)00083-5 DOI: https://doi.org/10.1016/S0308-0161(97)00083-5
Raju, I. S., & Newman Jr, J. C. (1982). Stress-intensity factors for internal and external surface cracks in cylindrical vessels. Journal of Pressure Vessel Technology, 104. 293-298. DOI: https://doi.org/10.1115/1.3264220
Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35, 379-386. DOI: https://doi.org/10.1115/1.3601206
Rogalski, G., Świerczyńska, A., Landowski, M., & Fydrych, D. (2020). Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and Incoloy 800HT nickel alloy. Metals, 10(5), 559. https://doi.org/10.3390/met10050559 DOI: https://doi.org/10.3390/met10050559
Salmi, H., El Had, K., El Bhilat, H., & Hachim, A. (2019). Numerical analysis of the effect of external circumferential elliptical cracks in transition thickness zone of pressurized pipes using XFEM. Journal of Applied and Computational Mechanics, 5(5), 861-874. http://dx.doi.org/10.22055/JACM.2019.28043.1452
Salmi, H., El Had, K., El Bhilat, H., & Hachim, A. (2020a). Numerical study of SIF for a crack in P265GH steel by XFEM. Recent Advances in Mathematics and Technology: Proceedings of the First International Conference on Technology, Engineering, and Mathematics (pp. 105-127). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-35202-8_6
Salmi, H., Hachim, A., El Bhilat, H., & El Had, K. (2020b). Crack influence on a pipe with double slope under internal pressure: Numerical simulation with XFEM. IIUM Engineering Journal, 21(2), 266-283. http://dx.doi.org/10.31436/iiumej.v21i2.1454 DOI: https://doi.org/10.31436/iiumej.v21i2.1454
Sanchez-Silva, M., Klutke, G. A., & Rosowsky, D. V. (2011). Life-cycle performance of structures subject to multiple deterioration mechanisms. Structural Safety, 33(3), 206-217. http://dx.doi.org/10.1016/j.strusafe.2011.03.003 DOI: https://doi.org/10.1016/j.strusafe.2011.03.003
Tang, J. E., Halvarsson, M., Asteman, H., & Svensson, J. E. (2001). The microstructure of the base oxide on 304L steel. Micron, 32(8), 799-805. DOI: https://doi.org/10.1016/S0968-4328(00)00087-1
Wang, Y. Z., Li, G. Q., Wang, Y. B., & Lyu, Y. F. (2021). Simplified method to identify full von Mises stress-strain curve of structural metals. Journal of Constructional Steel Research, 181, 106624. https://doi.org/10.1016/j.jcsr.2021.106624 DOI: https://doi.org/10.1016/j.jcsr.2021.106624
Xiao, G., Wen, L., & Tian, R. (2021). Arbitrary 3D crack propagation with Improved XFEM: Accurate and efficient crack geometries. Computer Methods in Applied Mechanics and Engineering, 377, 113659. https://doi.org/10.1016/j.cma.2020.113659 DOI: https://doi.org/10.1016/j.cma.2020.113659
Yu, M. C., & Pan, W. F. (2023). Failure of elliptical tubes with different long–short axis ratios under cyclic bending in different directions. Metals, 13(11), 1891. https://doi.org/10.3390/met13111891 DOI: https://doi.org/10.3390/met13111891
Zheng, Y., Dong, Z., Zhang, X., & Shi, H. (2024). Pipeline reliability assessment and predictive maintenance considering multi-crack dependent degradation. Journal of Engineering Manufacture, 238(8), 1122-1144. http://dx.doi.org/10.1177/0954 DOI: https://doi.org/10.1177/09544054231190671
Article Details
Abstract views: 284
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
