PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH

Dias Satria

dias.satria@ub.ac.id
Universitas Brawijaya (Indonesia)
https://orcid.org/0000-0002-4068-6807

Abstract

In recent years, the implementation of machine learning applications started to apply in other possible fields, such as economics, especially investment. But, many methods and modeling are used without knowing the most suitable one for predicting particular data. This study aims to find the most suitable model for predicting stock prices using statistical learning with RNN, LSTM, and GRU deep learning methods using stock price data for 4 (four) major banks in Indonesia, namely BRI, BNI, BCA, and Mandiri, from 2013 to 2022. The result showed that the ARIMA Box-Jenkins modeling is unsuitable for predicting BRI, BNI, BCA, and Bank Mandiri stock prices. In comparison, GRU presented the best performance in the case of predicting the stock prices of BRI, BNI, BCA, and Bank Mandiri.


Keywords:

GRU, Indonesia Stock Price Prediction, Machine Learning

Acheampong, P., Agalega, E., & Shibu, A. K. (2014). The effect of financial leverage and market size on stock returns on the ghana stock exchange: Evidence from Selected Stocks in the Manufacturing Sector. International Journal of Financial Research, 5(1), 125-134. https://doi.org/10.5430/ijfr.v5n1p125
DOI: https://doi.org/10.5430/ijfr.v5n1p125   Google Scholar

Ahmad, G. I., Singla, J., Ali, A., Reshi, A. A., & Salameh, A. A. (2022). Machine learning techniques for sentiment analysis of code-mixed and switched indian social media text corpus: A comprehensive review.
  Google Scholar

International Journal of Advanced Computer Science and Applications, 13(2), 455–467. https://doi.org/10.14569/IJACSA.2022.0130254
DOI: https://doi.org/10.14569/IJACSA.2022.0130254   Google Scholar

Almalaq, A., & Edwards, G. (2017). A review of deep learning methods applied on load forecasting. Proceedings - 16th IEEE International Conference on Machine Learning and Applications (pp. 511–516). IEEE. https://doi.org/10.1109/ICMLA.2017.0-110
DOI: https://doi.org/10.1109/ICMLA.2017.0-110   Google Scholar

Bank Indonesia. (2022). Policy Synergy and Innovation to Maintain Financial System Stability and Support National Economic Growth.
  Google Scholar

Bhatt, G., Bansal, H., Singh, R., & Agarwal, S. (2020). How much complexity does an RNN architecture need to learn syntax-sensitive dependencies? Proceedings of the 58th Annual Meeting of the Association for
  Google Scholar

Computational Linguistics: Student Research Workshop (pp. 244–254). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-srw.33
DOI: https://doi.org/10.18653/v1/2020.acl-srw.33   Google Scholar

Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Mussaddiq, A., & Kim, S. (2020). A dynamic DL-driven architecture to combat sophisticated android malware. IEEE Access, 8, 129600–129612. https://doi.org/10.1109/ACCESS.2020.3009819
DOI: https://doi.org/10.1109/ACCESS.2020.3009819   Google Scholar

Ding, G., & Qin, L. (2020). Study on the prediction of stock price based on the associated network model of LSTM. International Journal of Machine Learning and Cybernetics, 11(6), 1307–1317. https://doi.org/10.1007/s13042-019-01041-1
DOI: https://doi.org/10.1007/s13042-019-01041-1   Google Scholar

Ghenimi, A., Chaibi, H., & Omri, M. A. B. (2021). Liquidity risk determinants: Islamic vs conventional banks. International Journal of Law and Management, 63(1), 65–95. https://doi.org/10.1108/IJLMA-03-2018-
DOI: https://doi.org/10.1108/IJLMA-03-2018-0060   Google Scholar


  Google Scholar

Gupta, U., Bhattacharjee, V., & Bishnu, P. S. (2022). StockNet—GRU based stock index prediction. Expert Systems with Applications, 207(March 2021), 117986. https://doi.org/10.1016/j.eswa.2022.117986
DOI: https://doi.org/10.1016/j.eswa.2022.117986   Google Scholar

IDX (2023). https://www.idx.co.id/id. Retrieved March, 18 2023.
  Google Scholar

Jahan, I., & Sajal, S. (2018). Stock price prediction using recurrent neural network (RNN) algorithm on timeseries data. In 2018 Midwest Instruction and Computing Symposium. The College of St Scholastica.
  Google Scholar

Jarrah, M., & Salim, N. (2019). A recurrent neural network and a discrete wavelet transform to predict the Saudi stock price trends. International Journal of Advanced Computer Science and Applications, 10(4), 155–162. https://doi.org/10.14569/ijacsa.2019.0100418
DOI: https://doi.org/10.14569/IJACSA.2019.0100418   Google Scholar

Khan, M., Wang, H., Riaz, A., Elfatyany, A., & Karim, S. (2021). Bidirectional LSTM-RNN-based hybrid deep learning frameworks for univariate time series classification. Journal of Supercomputing, 77(7), 7021–
DOI: https://doi.org/10.1007/s11227-020-03560-z   Google Scholar

Le, T. H., Chuc, A. T., & Taghizadeh-Hesary, F. (2019). Financial inclusion and its impact on financial efficiency and sustainability: Empirical evidence from Asia. Borsa Istanbul Review, 19(4), 310–322. https://doi.org/10.1016/j.bir.2019.07.002
DOI: https://doi.org/10.1016/j.bir.2019.07.002   Google Scholar

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1), 18. https://doi.org/10.3390/e23010018
DOI: https://doi.org/10.3390/e23010018   Google Scholar

Ludwig, S. A. (2019). Comparison of Time Series Approaches applied to Greenhouse Gas Analysis: ANFIS, RNN, and LSTM. IEEE International Conference on Fuzzy Systems, (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8859013
DOI: https://doi.org/10.1109/FUZZ-IEEE.2019.8859013   Google Scholar

Madge, S., & Bhatt, S. (2015). Predicting Stock Price Direction using Support Vector Machines. https://github.com/SaahilMadge/Spring-2015-IW
  Google Scholar

Moghar, A., & Hamiche, M. (2020). Stock market prediction using LSTM recurrent neural network. Procedia Computer Science, 170, 1168–1173. https://doi.org/10.1016/j.procs.2020.03.049
DOI: https://doi.org/10.1016/j.procs.2020.03.049   Google Scholar

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7
DOI: https://doi.org/10.1186/s40537-014-0007-7   Google Scholar

Qin, H. (2019). Comparison of Deep learning models on time series forecasting : a case study of Dissolved Oxygen Prediction. ArXiv, arXiv:1911.08414. http://arxiv.org/abs/1911.08414
  Google Scholar

Ringmu, H. S., & Oumar, S. B. (2022). Forecasting stock prices in the New York stock exchange. Journal of Economics Bibliography, 9(1), 1–20. https://doi.org/10.1453/jeb.v9i1.2269
  Google Scholar

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing Journal, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181
DOI: https://doi.org/10.1016/j.asoc.2020.106181   Google Scholar

Shahi, T. B., Shrestha, A., Neupane, A., & Guo, W. (2020). Stock price forecasting with deep learning: A comparative study. Mathematics, 8(9), 1–15. https://doi.org/10.3390/math8091441
DOI: https://doi.org/10.3390/math8091441   Google Scholar

Shumway, R. H., & Stoffer, D. S. (2019). Time Series: A Data Analysis Approach Using R. CRC Press.
DOI: https://doi.org/10.1201/9780429273285   Google Scholar

Tembhurne, J. V., & Diwan, T. (2021). Sentiment analysis in textual, visual and multimodal inputs using recurrent neural networks. Multimedia Tools and Applications, 80(5), 6871–6910. https://doi.org/10.1007/s11042-020-10037-x
DOI: https://doi.org/10.1007/s11042-020-10037-x   Google Scholar

Taud, H., & Mas, J. F. (2018). Multilayer Perceptron (MLP) BT. Geomatic Approaches for Modeling Land Change Scenarios (pp. 451–455). Springer.
DOI: https://doi.org/10.1007/978-3-319-60801-3_27   Google Scholar

Tsai, Y. T., Zeng, Y. R., & Chang, Y. S. (2018). Air pollution forecasting using rnn with lstm. Proceedings - IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th
  Google Scholar

International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASCPICom-DataCom-CyberSciTec 2018, (pp. 1068–1073). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00178
DOI: https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00178   Google Scholar

Utomo, D. (2017). Stock price prediction using back propagation neural network based on gradient descent with momentum and adaptive learning rate. Journal of Internet Banking and Commerce, 22(3), 16.
  Google Scholar

Wei, W. W. S. (2006). Time series analysis: univariate and multivariate methods. Journal of the American Statistical Association, 86(413), 245-246. https://doi.org/10.2307/2289741
DOI: https://doi.org/10.2307/2289741   Google Scholar

Wei, X., Zhang, L., Yang, H. Q., Zhang, L., & Yao, Y. P. (2021). Machine learning for pore-water pressure timeseries prediction: Application of recurrent neural networks. Geoscience Frontiers, 12(1), 453–467. https://doi.org/10.1016/j.gsf.2020.04.011
DOI: https://doi.org/10.1016/j.gsf.2020.04.011   Google Scholar

Wibowo, J. M. (2020). Lockdown Generation: Pengangguran di Masa COVID-19. Pusat Riset Kependudukan.
  Google Scholar

Wu, C. H., Lu, C. C., Ma, Y. F., & Lu, R. S. (2019). A new forecasting framework for bitcoin price with LSTM. IEEE International Conference on Data Mining Workshops (pp. 168–175). IEEE. https://doi.org/10.1109/ICDMW.2018.00032
DOI: https://doi.org/10.1109/ICDMW.2018.00032   Google Scholar

Yadav, O., Cynara, G., Abhishek, K., & Abhishek, Y. (2019). Inflation prediction model using machine learning. International Journal of Information and Computing Science, 6(5), 121–128.
  Google Scholar

Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091–2100. https://doi.org/10.1016/j.procs.2020.03.257
DOI: https://doi.org/10.1016/j.procs.2020.03.257   Google Scholar

Yang, C., & Guo, S. (2021). Inflation prediction method based on deep learning. Computational Intelligence and Neuroscience, 2021, 1071145. https://doi.org/10.1155/2021/1071145
DOI: https://doi.org/10.1155/2021/1071145   Google Scholar

Zainab, M., Usmani, A. R., Mehrban, S., & Hussain, M. (2019). FPGA Based Implementations of RNN and CNN: A Brief Analysis. 3rd International Conference on Innovative Computing (pp. 1-8). IEEE. https://doi.org/10.1109/ICIC48496.2019.8966676
DOI: https://doi.org/10.1109/ICIC48496.2019.8966676   Google Scholar

Download


Published
2023-03-31

Cited by

Satria, D. (2023). PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH. Applied Computer Science, 19(1), 82–94. https://doi.org/10.35784/acs-2023-06

Authors

Dias Satria 
dias.satria@ub.ac.id
Universitas Brawijaya Indonesia
https://orcid.org/0000-0002-4068-6807

Statistics

Abstract views: 711
PDF downloads: 387


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.