A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Article Sidebar
Open full text
Issue Vol. 19 No. 2 (2023)
-
CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC
Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI1-24
-
MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK
Qingyu Liu, Roben A. Juanatas25-42
-
APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES
Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ43-54
-
APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM
Tomasz Sikora, Wanda Gryglewicz-Kacerka55-62
-
THE POTENTIAL FOR REAL-TIME TESTING OF HIGH FREQUENCY TRADING STRATEGIES THROUGH A DEVELOPED TOOL DURING VOLATILE MARKET CONDITIONS
Mantas Vaitonis, Konstantinas Korovkinas63-81
-
NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT
Thanh-Lam BUI, Ngoc-Tien TRAN82-95
-
A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL
Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran96-111
-
HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES
Mouna TARIK, Ayoub MNIAI, Khalid JEBARI112-124
-
CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK
Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti125-146
-
EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS
Abdelrahman Halawa, Shehab Gamalel-Din; Abdurrahman Nasr126-141
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents a new method for generating nonlinear helical spring geometries based on a rigorous mathematical formulation. The model was developed for two scenarios for modifying a spring with a stepped helix angle: for a fixed helix angle of the active coils and for a fixed overall height of the spring. It allows the development of compression spring geometries with non-linear load-deflection curves, while maintaining predetermined values of selected geometrical parameters such as the number of passive and active coils and the total height or helix angle of the linear segment of the active coils. Based on the proposed models, Python scripts were developed that can be implemented in any CAD software offering scripting capabilities or equipped with Application Programming Interfaces. Examples of scripts that use the developed model to generate the geometry of selected springs are presented. FEM analyses of quasi-static compression tests carried out for these spring models have shown that, using the proposed tools, springs with a wide range of variation in static load-deflection curves can be obtained, including progressive springs with a high degree of nonlinearity in the characteristics. The obtained load-deflection curves can be described with a high degree of accuracy by power function. The proposed method can find applications in both machine design and spring manufacturing.
Keywords:
References
Arshad, A., Nazir, A., & Jeng, J.-Y. (2022). Design and performance evaluation of multi-helical springs fabricated by Multi Jet Fusion additive manufacturing technology. International Journal of Advanced Manufacturing Technology, 118, 195-206. https://doi.org/10.1007/s00170-021-07756-2 DOI: https://doi.org/10.1007/s00170-021-07756-2
Bai, J.-B., Liu, T.-W., Wang, Z.-Z., Lin, Q.-H., Cong, Q., Wang, Y.-F., Ran, J.-N., Li, D., & Bu, G.-Y. (2021). Determining the best practice – Optimal designs of composite helical structures using Genetic Algorithms. Composite Structures, 268, 113982. https://doi.org/10.1016/j.compstruct.2021.113982 DOI: https://doi.org/10.1016/j.compstruct.2021.113982
Chandravanshi, M.L., & Mukhopadhyay, A.K. (2017). Analysis of variations in vibration behavior of vibratory feeder due to change in stiffness of helical springs using FEM and EMA methods. Braz. Soc. Mech. Sci. Eng (vol. 39, pp. 3343–3362). Springer. https://doi.org/10.1007/s40430-017-0767-z DOI: https://doi.org/10.1007/s40430-017-0767-z
Cimolai, G., Dayyani, I., & Qin, Q. (2022). Multi-objective shape optimization of large strain 3D helical structures for mechanical metamaterials. Materials & Design, 215, 110444. https://doi.org/10.1016/j.matdes.2022.110444 DOI: https://doi.org/10.1016/j.matdes.2022.110444
Ding, X., & Selig J.-M. (2004). On the compliance of coiled springs. International Journal of Mechanical Sciences, 46(5), 703-727. https://doi.org/10.1016/j.ijmecsci.2004.05.009 DOI: https://doi.org/10.1016/j.ijmecsci.2004.05.009
Fatchurrohman, N., & Chia, S.-T. (2017). Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach. Materials Science and Engineering, 257, 012060. https://doi:10.1088/1757-899X/257/1/012060 DOI: https://doi.org/10.1088/1757-899X/257/1/012060
Geuzaine, C., Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and postprocessing facilities: THE GMSH PAPER, International Journal for Numerical Methods in Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579 DOI: https://doi.org/10.1002/nme.2579
Gobbi, M., & Mastinu, G. (2001). On the optimal design of composite material tubular helical springs. Meccanica, 36, 525-553. https://doi.org/10.1023/A:1015640909013 DOI: https://doi.org/10.1023/A:1015640909013
Gu, Z., Hou, X., Keating, E., & Ye, J. (2020). Non-linear finite element model for dynamic analysis of highspeed valve train and coil collisions. International Journal of Mechanical Sciences, 173, 105476. https://doi.org/10.1016/j.ijmecsci.2020.105476 DOI: https://doi.org/10.1016/j.ijmecsci.2020.105476
Gzal M., Groper, M., & Gendelman, O. (2017) Analytical, experimental and finite element analysis of elliptical cross-section helical spring with small helix angle under static load. International Journal of Mechanical Sciences, 130, 476-486. https://doi.org/10.1016/j.ijmecsci.2017.06.025 DOI: https://doi.org/10.1016/j.ijmecsci.2017.06.025
Liberman, K. (2006). Optimierung von Schraubendruckfedern. Technische Akademie Esslingen
Liu, H., & Kim, D. (2009). Effects of end Coils on the Natural Frequency of Automotive Engine Valve Springs. International. Journal of Automotive Technology, 10(4), 413–420. https://doi.org/10.1007/s12239-009-0047-8 DOI: https://doi.org/10.1007/s12239-009-0047-8
Meissner M., & Schorcht H.-J. (2007). Metallfedern - Grundlagen, Werkstoffe, Berechnung, Gestaltung und Rechnereinsatz. Springer.
Michalczyk, K. (2015). Analysis of lateral vibrations of the axially loaded helical spring. Journal of Theoretical and Applied Mechanics, 53(3), 745–755. https://doi.org/10.15632/jtam-pl.53.3.745 DOI: https://doi.org/10.15632/jtam-pl.53.3.745
Nazir, A., Ali, M., Hsieh, CH., & Jeng J.W. (2020). Investigation of stiffness and energy absorption of variable dimension helical springs fabricated using multijet fusion technology. The International Journal of Advanced Manufacturing Technology, (vol. 110, pp. 2591–2602). Springer. https://doi.org/10.1007/s00170-020-06061-8 DOI: https://doi.org/10.1007/s00170-020-06061-8
Pöllänen, I., & Martikka, H. (2010). Optimal re-design of helical springs using fuzzy design and FEM. Advances in Engineering Software, 41(3), 410-414. https://doi.org/10.1016/j.advengsoft.2009.03.010 DOI: https://doi.org/10.1016/j.advengsoft.2009.03.010
Rahul, M.S., & Rameshkumar, K. (2021). Multi-objective optimization and numerical modelling of helical coil spring for automotive application. Materialstoday: Proceedings, 46(10), 4847–4853. https://doi.org/10.1016/j.matpr.2020.10.324 DOI: https://doi.org/10.1016/j.matpr.2020.10.324
Sahu, D. K., Dandsena, J., Mahapatra, T. R., & Mishra. D. (2022). Design and Characterization of Progressive Coil Spring for Suspension Systems. Journal of The Institution of Engineers (India): Series C, 103, 705– 715. https://doi.org/10.1007/s40032-022-00817-9 DOI: https://doi.org/10.1007/s40032-022-00817-9
Schorcht, H.-J., Kletzin, U., Micke, D., Wauro, F. (1998). Entwicklung eines modularen, wissensbasierten CAD/FEMSystems zur integrierten Gestaltung und Berechnung von Federn und Federanordnungen. In Pahl G. (Ed.) Professor Dr.-lng. E.h. Dr.-lng. Wolfgang Beitz zum Gedenken Sein Wirken und Schaffen, (pp. 543-557). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-41164-3 DOI: https://doi.org/10.1007/978-3-662-41164-3_62
Taktak, M., Dammak, F., Abid, S., & Haddar, M. (2008). A finite element for dynamic analysis of a cylindrical isotropic helical spring. Journal of Mechanics, Materials and Structures, 3(4), 641–658. https://doi.org/10.2140/jomms.2008.3.641 DOI: https://doi.org/10.2140/jomms.2008.3.641
Warzecha, M., Michalczyk, K., & Machniewicz, T. (2022). A novel slotted cylinder spring geometry with an improved energy storing capacity. Arabian Journal for Science and Engineering, 47, 15539–15549. https://doi.org/10.1007/s13369-022-06692-x DOI: https://doi.org/10.1007/s13369-022-06692-x
Wittrick W.-H. (1966). On elastic wave propagation in helical springs. International Journal of Mechanical Sciences, 8(1), 25-47. https://doi.org/10.1016/0020-7403(66)90061-0 DOI: https://doi.org/10.1016/0020-7403(66)90061-0
Yang, C.-J., Zhang, W.H., Ren, G.X., & Liu, X.-Y. (2014). Modeling and dynamics analysis of helical spring under compression using a curved beam element with consideration on contact between its coils. Meccanica, (vol. 49, pp. 907–917). Springer. https://doi.org/10.1007/s11012-013-9837-1 DOI: https://doi.org/10.1007/s11012-013-9837-1
Zhao, J., Gu, Z., Yang, Q., Shao, J., & Hou, X. (2023). Dynamic Finite Element Model Based on Timoshenko Beam Theory for Simulating High-Speed Nonlinear Helical Springs. Sensors, 23(7), 3737. https://doi.org/10.3390/s23073737 DOI: https://doi.org/10.3390/s23073737
Zhuo, Y., Qi, Z., Zhang, J., & Wang, G. (2022). A geometrically nonlinear spring element for structural analysis of helical springs. Archive of Applied Mechanics, 92, 1789–1821. https://doi.org/10.1007/s00419-022- 02147-9 DOI: https://doi.org/10.1007/s00419-022-02147-9
Article Details
Abstract views: 320
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
