ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS
Article Sidebar
Open full text
Issue Vol. 16 No. 4 (2020)
-
GRAPH-BASED FOG COMPUTING NETWORK MODEL
Ihor PYSMENNYI, Anatolii PETRENKO, Roman KYSLYI5-20
-
JOINT EFFECT OF FORECASTING AND LOT-SIZING METHOD ON COST MINIMIZATION OBJECTIVE OF A MANUFACTURER: A CASE STUDY
Jack OLESEN, Carl-Emil Houmøller PEDERSEN, Markus Germann KNUDSEN, Sandra TOFT, Vladimir NEDBAILO, Johan PRISAK, Izabela Ewa NIELSEN, Subrata SAHA21-36
-
ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS
Marcin MACIEJEWSKI, Barbara MACIEJEWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI37-47
-
ARCHITECTURAL PARADIGM OF THE INTERACTIVE INTERFACE MODULE IN THE CLOUD TECHNOLOGY MODEL
Denis RATOV48-55
-
CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING
Amina ALYAMANI, Oleh YASNIY56-63
-
DEVELOPMENT OF AN ONTOLOGY-BASED ADAPTIVE PERSONALIZED E-LEARNING SYSTEM
Olutayo BOYINBODE, Paul OLOTU, Kolawole AKINTOLA64-84
-
COMPUTER VISION BASED ON RASPBERRY PI SYSTEM
Mohanad ABDULHAMID, Otieno ODONDI, Muaayed AL-RAWI85-102
-
ORDER VIOLATION IN MULTITHREADED APPLICATIONS AND ITS DETECTION IN STATIC CODE ANALYSIS PROCESS
Damian GIEBAS, Rafał WOJSZCZYK103-117
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
Abstract
Fast and automated ECG diagnosis is of great benefit for treatment of cardiovascular and other conditions. The algorithms used to extract parameters need to be precise, robust and efficient. Appropriate training and testing methods for such algorithms need to be implemented for optimal results. This paper presents a software solution for computer ECG generation and a simplified concept of testing process. All the parameters of the resulting generated signal can be tweaked and set properly. Such software can also be beneficial for training and educational use.
Keywords:
References
Barill, T., & SlikkStat Learning Inc. (2012). The six second ECG: A practical guide to basic and 12 lead ECG interpretation. Palm Springs, Calif.: SkillStat Learning Inc.
Boulakia, M., Cazeau, S., Fernández, M. A., Gerbeau, J.-F., & Zemzemi, N. (2010). Mathematical Modeling of Electrocardiograms: A Numerical Study. Annals of Biomedical Engineering, 38(3), 1071–1097. https://doi.org/10.1007/s10439-009-9873-0 DOI: https://doi.org/10.1007/s10439-009-9873-0
Bronzino, J. D. (2000). The biomedical engineering handbook. Boca Raton, Fla.: CRC Press in cooperation with IEEE Press.
Burhan, A. (2011). Einthoven triangle ECG. Retrieved 19 December 2020, from Medicalopedia website: https://mk0medicalopediwjftu.kinstacdn.com/wp-content/uploads/2011/11/einthoven-triangleecg.jpg
Clifford, G. D., Azuaje, F., & Mcsharry, P. (2006). ECG statistics, noise, artifacts, and missing data. Advanced Methods and Tools for ECG Data Analysis, 6, 18. DOI: https://doi.org/10.1186/1475-925X-6-18
Costa, C. M. (2016). Computational Modeling of Bioelectrical Activity of the Heart at Microscopic and Macroscopic Size Scales (Doctoral dissertation). Karl-Franzens Universit ̈at Graz, Graz. https://doi.org/10.13140/RG.2.2.26259.99365
Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03
Ławicki, T., & Zhirnova, O. (2015). Application of curvelet transform for denoising of CT images. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015, (966226). International Society for Optics and Photonics. https://doi.org/10.1117/12.2205483 DOI: https://doi.org/10.1117/12.2205483
Luthra, A. (2007). ECG made easy. New Delhi; Tunbridge Wells: Jaypee ; Anshan Ltd. DOI: https://doi.org/10.5005/jp/books/10248
Machrowska, A., Karpiński, R., Krakowski, P., & Jonak, J. (2019). Diagnostic factors for opened and closed kinematic chain of vibroarthrography signals. Applied Computer Science, 15(3), 34-44. http://doi.org/10.23743/acs-2019-19
Maciejewski, M. (2019). Information technology implementations and limitations in medical research. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 5(1), 66–72. https://doi.org/10.5604/20830157.1148052 DOI: https://doi.org/10.5604/20830157.1148052
Maciejewski, M., & Dzida, G. (2017). ECG parameter extraction and classification in noisy signals. 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 243–248). IEEE. https://doi.org/10.23919/SPA.2017.8166872 DOI: https://doi.org/10.23919/SPA.2017.8166872
Maciejewski, M., Surtel, W., Wójcik, W., Masiak, J., Dzida, G., & Horoch, A. (2014). Telemedical systems for home monitoring of patients with chronic conditions in rural environment. Ann Agric Environ Med., 21(1), 167-73.
Omiotek, Z. (2017). Improvement of the classification quality in detection of Hashimoto’s disease with a combined classifier approach. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(8), 774–782. DOI: https://doi.org/10.1177/0954411917702682
Omiotek, Z., Dzierżak, R., & Uhlig, S. (2019). Fractal analysis of the computed tomography images of vertebrae on the thoraco-lumbar region in diagnosing osteoporotic bone damage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(12), 1269–1281. DOI: https://doi.org/10.1177/0954411919880695
Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230–236. https://doi.org/10.1109/TBME.1985.325532 DOI: https://doi.org/10.1109/TBME.1985.325532
Rehman, A., Mustafa, M., & Israr, I. (2013). Survey of wearable sensors with comparative study of noise reduction ecg filters. International Journal of Computing and Network Technology, 221(1249), 1–21. DOI: https://doi.org/10.12785/ijcnt/010105
Reisner, A., Clifford, G., & Mark, R. (2006). The Physiological Basis of the Electrocardiogram.
Rincón, F. J., Gutiérrez, L., Jiménez, M., Díaz, V., Khaled, N., Atienza, D., … Micheli, G. D. (2009). Implementation of an Automated ECG-based Diagnosis Algorithm for a Wireless Body Sensor Plataform. Proceedings of the International Conference on Biomedical Electronics and Devices (BIODEVICES 2009) (pp. 88–96). Porto, Springer.
Surtel, W., Maciejewski, M., & Maciejewska, B. (2013). Processing of simultaneous biomedical signal data in circulatory system conditions diagnosis using mobile sensors during patient activity. 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 163–167). IEEE.
Waechter, J. (2012). Introduction to ECG’s: Rhythm Analysis. Jason Waechter. DOI: https://doi.org/10.3917/eufor.364.0005
Xavax. (2016). A Wiggers diagram, showing the cardiac cycle events occuring in the left ventricle. Wikimedia Commons: Wiggers Diagram.svg. Retrieved from https://commons.wikimedia.org/w/index.php?curid=50317988
Zhou, H., Hou, K.-M., & Zuo, D. (2009). Real-Time Automatic ECG Diagnosis Method Dedicated to Pervasive Cardiac Care. Wireless Sensor Network, 01(04), 276–283. https://doi.org/10.4236/wsn.2009.14034 DOI: https://doi.org/10.4236/wsn.2009.14034
Article Details
Abstract views: 594
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
