ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS

Marcin MACIEJEWSKI

m.maciejewski@pollub.pl
* Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Institute of Electronics and Information Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

Barbara MACIEJEWSKA


Independent researcher, Lublin (Poland)

Robert KARPIŃSKI


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Przemysław KRAKOWSKI


Medical University of Lublin, Chair and Department of Traumatology and Emergency Medicine, Staszica 11, 20-081 Lublin (Poland)

Abstract

Fast and automated ECG diagnosis is of great benefit for treatment of cardiovascular and other conditions. The algorithms used to extract parameters need to be precise, robust and efficient. Appropriate training and testing methods for such algorithms need to be implemented for optimal results. This paper presents a software solution for computer ECG generation and a simplified concept of testing process. All the parameters of the resulting generated signal can be tweaked and set properly. Such software can also be beneficial for training and educational use.


Keywords:

ECG, software, algorithm testing, heart

Barill, T., & SlikkStat Learning Inc. (2012). The six second ECG: A practical guide to basic and 12 lead ECG interpretation. Palm Springs, Calif.: SkillStat Learning Inc.
  Google Scholar

Boulakia, M., Cazeau, S., Fernández, M. A., Gerbeau, J.-F., & Zemzemi, N. (2010). Mathematical Modeling of Electrocardiograms: A Numerical Study. Annals of Biomedical Engineering, 38(3), 1071–1097. https://doi.org/10.1007/s10439-009-9873-0
DOI: https://doi.org/10.1007/s10439-009-9873-0   Google Scholar

Bronzino, J. D. (2000). The biomedical engineering handbook. Boca Raton, Fla.: CRC Press in cooperation with IEEE Press.
  Google Scholar

Burhan, A. (2011). Einthoven triangle ECG. Retrieved 19 December 2020, from Medicalopedia website: https://mk0medicalopediwjftu.kinstacdn.com/wp-content/uploads/2011/11/einthoven-triangleecg.jpg
  Google Scholar

Clifford, G. D., Azuaje, F., & Mcsharry, P. (2006). ECG statistics, noise, artifacts, and missing data. Advanced Methods and Tools for ECG Data Analysis, 6, 18.
DOI: https://doi.org/10.1186/1475-925X-6-18   Google Scholar

Costa, C. M. (2016). Computational Modeling of Bioelectrical Activity of the Heart at Microscopic and Macroscopic Size Scales (Doctoral dissertation). Karl-Franzens Universit ̈at Graz, Graz. https://doi.org/10.13140/RG.2.2.26259.99365
  Google Scholar

Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03
  Google Scholar

Ławicki, T., & Zhirnova, O. (2015). Application of curvelet transform for denoising of CT images. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015, (966226). International Society for Optics and Photonics. https://doi.org/10.1117/12.2205483
DOI: https://doi.org/10.1117/12.2205483   Google Scholar

Luthra, A. (2007). ECG made easy. New Delhi; Tunbridge Wells: Jaypee ; Anshan Ltd.
DOI: https://doi.org/10.5005/jp/books/10248   Google Scholar

Machrowska, A., Karpiński, R., Krakowski, P., & Jonak, J. (2019). Diagnostic factors for opened and closed kinematic chain of vibroarthrography signals. Applied Computer Science, 15(3), 34-44. http://doi.org/10.23743/acs-2019-19
  Google Scholar

Maciejewski, M. (2019). Information technology implementations and limitations in medical research. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 5(1), 66–72. https://doi.org/10.5604/20830157.1148052
DOI: https://doi.org/10.5604/20830157.1148052   Google Scholar

Maciejewski, M., & Dzida, G. (2017). ECG parameter extraction and classification in noisy signals. 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 243–248). IEEE. https://doi.org/10.23919/SPA.2017.8166872
DOI: https://doi.org/10.23919/SPA.2017.8166872   Google Scholar

Maciejewski, M., Surtel, W., Wójcik, W., Masiak, J., Dzida, G., & Horoch, A. (2014). Telemedical systems for home monitoring of patients with chronic conditions in rural environment. Ann Agric Environ Med., 21(1), 167-73.
  Google Scholar

Omiotek, Z. (2017). Improvement of the classification quality in detection of Hashimoto’s disease with a combined classifier approach. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(8), 774–782.
DOI: https://doi.org/10.1177/0954411917702682   Google Scholar

Omiotek, Z., Dzierżak, R., & Uhlig, S. (2019). Fractal analysis of the computed tomography images of vertebrae on the thoraco-lumbar region in diagnosing osteoporotic bone damage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(12), 1269–1281.
DOI: https://doi.org/10.1177/0954411919880695   Google Scholar

Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230–236. https://doi.org/10.1109/TBME.1985.325532
DOI: https://doi.org/10.1109/TBME.1985.325532   Google Scholar

Rehman, A., Mustafa, M., & Israr, I. (2013). Survey of wearable sensors with comparative study of noise reduction ecg filters. International Journal of Computing and Network Technology, 221(1249), 1–21.
DOI: https://doi.org/10.12785/ijcnt/010105   Google Scholar

Reisner, A., Clifford, G., & Mark, R. (2006). The Physiological Basis of the Electrocardiogram.
  Google Scholar

Rincón, F. J., Gutiérrez, L., Jiménez, M., Díaz, V., Khaled, N., Atienza, D., … Micheli, G. D. (2009). Implementation of an Automated ECG-based Diagnosis Algorithm for a Wireless Body Sensor Plataform. Proceedings of the International Conference on Biomedical Electronics and Devices (BIODEVICES 2009) (pp. 88–96). Porto, Springer.
  Google Scholar

Surtel, W., Maciejewski, M., & Maciejewska, B. (2013). Processing of simultaneous biomedical signal data in circulatory system conditions diagnosis using mobile sensors during patient activity. 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 163–167). IEEE.
  Google Scholar

Waechter, J. (2012). Introduction to ECG’s: Rhythm Analysis. Jason Waechter.
DOI: https://doi.org/10.3917/eufor.364.0005   Google Scholar

Xavax. (2016). A Wiggers diagram, showing the cardiac cycle events occuring in the left ventricle. Wikimedia Commons: Wiggers Diagram.svg. Retrieved from https://commons.wikimedia.org/w/index.php?curid=50317988
  Google Scholar

Zhou, H., Hou, K.-M., & Zuo, D. (2009). Real-Time Automatic ECG Diagnosis Method Dedicated to Pervasive Cardiac Care. Wireless Sensor Network, 01(04), 276–283. https://doi.org/10.4236/wsn.2009.14034
DOI: https://doi.org/10.4236/wsn.2009.14034   Google Scholar

Download


Published
2020-12-30

Cited by

MACIEJEWSKI, M. ., MACIEJEWSKA, B. ., KARPIŃSKI, R. ., & KRAKOWSKI, P. . (2020). ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS. Applied Computer Science, 16(4), 37–47. https://doi.org/10.23743/acs-2020-27

Authors

Marcin MACIEJEWSKI 
m.maciejewski@pollub.pl
* Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Institute of Electronics and Information Technology, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Barbara MACIEJEWSKA 

Independent researcher, Lublin Poland

Authors

Robert KARPIŃSKI 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Przemysław KRAKOWSKI 

Medical University of Lublin, Chair and Department of Traumatology and Emergency Medicine, Staszica 11, 20-081 Lublin Poland

Statistics

Abstract views: 236
PDF downloads: 24


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.