IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY

Andrzej ŁUKASZEWICZ


Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Operation, Wiejska 45 c, 15-351 Białystok (Poland)
https://orcid.org/0000-0003-0373-4803

Jerzy JÓZWIK

j.jozwik@pollub.pl
(Poland)

Kamil CYBUL


Lublin University of Technology, Doctoral School at the Lublin University of Technology, Nadbystrzycka 38 B/406, 20-618 Lublin (Poland)

Abstract

A mathematical model is presented for investigating the temperature field caused by the rotary friction welding of dissimilar metals. For this purpose, an axisymmetric, nonlinear, boundary value problem of heat conduction is formulated with allowance for the frictional heating of two cylindrical specimens of finite length made of Al 6061 aluminium alloy and 304 stainless steel. The thermo-physical properties of materials change with increasing temperature. It was assumed that the coefficient of friction does not depend on the temperature. The mechanism of heat generation due to friction on the contact surface with the temperature field of samples is considered. The boundary problem of heat conduction was reduced to the set of nonlinear ordinary differential equations at time t relative to the values of temperature T at the finite elements nodes. The numerical solution of the problem was obtained with the inverse 2nd order differentiation method implemented in COMSOL FEM system (finite element method), with time step ∆t=0.1 (s). The influence of various values of friction coefficient is presented.

Supporting Agencies

This research was financed by the Ministry of Science and Higher Education of Poland with allocation to the Faculty of Mechanical Engineering Bialystok University of26 Technology for the WZ/WMIIM/ 5/2023 academic project in the mechanical engineering discipline.

Keywords:

friction welding, friction coefficient, finite element method, frictional heating

Simoes, F., &Rodrigues, D. M. (2014). Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: Literature review, experimental results and empirical analysis. Materials & Design, 59, 344–351. https://doi.org/10.1016/j.matdes.2013.12.038
DOI: https://doi.org/10.1016/j.matdes.2013.12.038   Google Scholar

Uday, M. B., Ahmad-Fauzi, M.N., Zuhailawati, H., & Ismail, A.B. (2012). Thermal analysis of friction welding process in relation to the welding of YSZ–alumina composite and 6061 aluminum alloy. Applied Surface Science, 258(20), 8264–8272. https://doi.org/10.1016/j.apsusc.2012.05.035
DOI: https://doi.org/10.1016/j.apsusc.2012.05.035   Google Scholar

Taban, E., Gould, J.E., & Lippold, J.C. (2010). Dissimilar friction welding of 6061–T6 aluminum and AISI 1018 steel: properties and mi-crostructural characterization. Materials & Design, 31(5), 2305–2311. . https://doi.org/10.1016/j.matdes.2009.12.010
DOI: https://doi.org/10.1016/j.matdes.2009.12.010   Google Scholar

Maalekian, M. (2007). Friction welding – critical assessment of literature. Science and Technology of Welding and Joining, 12(8), 738–759. https://doi.org/10.1179/174329307X249333
DOI: https://doi.org/10.1179/174329307X249333   Google Scholar

Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H. & Ismail, A. B. (2010) Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15(7), 534–558. https://doi.org/10.1179/136217110X12785889550064
DOI: https://doi.org/10.1179/136217110X12785889550064   Google Scholar

Gooch, T. G. (1973) Friction welding, international metallurgical reviews, 18(1), 42.
DOI: https://doi.org/10.1179/imtlr.1973.18.1.42   Google Scholar

Bhamji, I., Preuss, M., Threadgill, P. L., & Addison, A. C. (2011) Solid state joining of metals by linear friction welding: a literature review. Materials Science and Technology, 27(1), 2–12. https://doi.org/10.1179/026708310X520510
DOI: https://doi.org/10.1179/026708310X520510   Google Scholar

Pinheiro, M.A., & Bracarense, A.Q. (2019). Influence of initial contact geometry on mechanical properties in friction welding of dissimilar materials aluminum 6351 T6 and SAE 1020 Steel. Advances in Materials Science and Engineering. 1759484. https://doi.org/10.1155/2019/1759484
DOI: https://doi.org/10.1155/2019/1759484   Google Scholar

Senkathir S., Siddharth V.B. (2020). Friction welding of dissimilar metals (aluminium AL 6061 T6 and stainless steel AISI 304). IOP Conf. Ser.: Mater. Sci. Eng. 912: no. 032043.
DOI: https://doi.org/10.1088/1757-899X/912/3/032043   Google Scholar

Wang, G., Li, J., Wang, W., Xiong, J., & Zhang, F. (2018). Study on the effect of energy-input on the joint mechanical properties of rotary friction-welding. Metals, 8(11), 908. https://doi.org/10.3390/met8110908
DOI: https://doi.org/10.3390/met8110908   Google Scholar

Sasmito, A., Ilman, M. N., Iswanto, P. T., & Muslih, R. (2022). Effect of rotational speed on static and fano.tigue properties of rotary friction welded dissimilar AA7075/AA5083 aluminium alloy joints. Metals, 12(1): 99. https://doi.org/10.3390/met12010099
DOI: https://doi.org/10.3390/met12010099   Google Scholar

Li, W., Vairis, A., Preuss, M., & Ma, T. (2016) Linear and rotary friction welding review. International Materials Reviews. 61(2), 71–100. https://doi.org/10.1080/09506608.2015.1109214
DOI: https://doi.org/10.1080/09506608.2015.1109214   Google Scholar

Rajak, D. K., Pagar, D. D., Menezes, P. L., & Eyvazian, A. (2020) Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34(24), 2613–2637. https://doi.org/10.1080/01694243.2020.1780716
DOI: https://doi.org/10.1080/01694243.2020.1780716   Google Scholar

Shamanian, M., Mostaan, H., Safari, M., & Szpunar, J. A. (2016) EBSD study on grain boundary and microtexture evolutions during friction stir processing of A413 cast aluminum alloy. Journal of Materials Engineering and Performance, 25(7), 2824–2835. https://doi.org/10.1007/s11665-016-2141- 1
DOI: https://doi.org/10.1007/s11665-016-2141-1   Google Scholar

Thapliyal, S., & Dwivedi, D. K. (2020) Fatigue performance of friction stir welded Al2024 alloy in a different corrosive environment. Materialwissenschaft und Werkstofftechnik, 51,(2), 174–180. https://doi.org/10.1002/mawe.201800171
DOI: https://doi.org/10.1002/mawe.201800171   Google Scholar

Ross, K., & Sorensen, C. (2013). Advances in temperature control for FSP. In Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R. (eds) Friction Stir Welding and Processing VII, (pp. 301–310). Springer. https://doi.org/10.1007/978-3-319-48108-1_31
DOI: https://doi.org/10.1007/978-3-319-48108-1_31   Google Scholar

Chen, Z. W., & Cui, S. (2008) On the forming mechanism of banded structures in aluminium alloy friction stir welds. Scripta Materialia, 58(5), 417–420. https://doi.org/10.1016/j.scriptamat.2007.10.026
DOI: https://doi.org/10.1016/j.scriptamat.2007.10.026   Google Scholar

Mattie, A. A., Ezdeen, S. Y., & Khidhir, G. I. (2023) Optimization of parameters in rotary friction welding process of dissimilar austenitic and ferritic stainless steel using finite element analysis. Advances in Mechanical Engineering, 15(7). https://doi.org/10.1177/16878132231186015
DOI: https://doi.org/10.1177/16878132231186015   Google Scholar

Ghias, S. A., Vijaya, R. B., Elanchezhian, C., Siddhartha, D., & Ramanan, N. (2019) Analysis of the friction welding mechanism of low carbon steel–stainless steel and aluminium–copper. Materials Today: Proceedings, 16(2), 766–775. https://doi.org/10.1016/j.matpr.2019.05.157
DOI: https://doi.org/10.1016/j.matpr.2019.05.157   Google Scholar

Mehta, K. P. (2019) A review on friction-based joining of dissimilar aluminum–steel joints. Journal of Materials Research, 34, 78–96. https://doi.org/10.1557/jmr.2018.332
DOI: https://doi.org/10.1557/jmr.2018.332   Google Scholar

Livingston, R. V. (2019) Comparison of heat generation models in finite element analysis of friction welding. PhD Tesis. Brigham Young University.
  Google Scholar

Łukaszewicz, A. (2018) Nonlinear numerical model of heat generation in the rotary friction welding. Journal of Friction and Wear, 39(6), 476–482. https://doi.org/10.3103/S1068366618060089
DOI: https://doi.org/10.3103/S1068366618060089   Google Scholar

Łukaszewicz A. (2019) Temperature field in the contact zone in the course of rotary friction welding of metals. Materials Science, 55(1), 39–45. https://doi.org/10.1007/s11003-019-00249-4
DOI: https://doi.org/10.1007/s11003-019-00249-4   Google Scholar

COMSOL Multiphysics v. 5.2a. www.comsol.com. COMSOL AB, Stockholm, Sweden.
  Google Scholar

Rothman M.F. (1988) High-Temperature Property Data: Ferrous Alloys. ASM Int., Ohio.
  Google Scholar

Bouarroudj, E., Chikh, S., Abdi, S., & Miroud, D. (2017) Thermal analysis during a rotational friction welding. Applied Thermal Engineering, 110, 1543–1553. https://doi.org/10.1016/j.applthermaleng.2016.09.067
DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.067   Google Scholar

Download


Published
2023-10-02

Cited by

ŁUKASZEWICZ, A., JÓZWIK, J., & CYBUL, K. . (2023). IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY. Applied Computer Science, 19(3), 17–27. https://doi.org/10.35784/acs-2023-22

Authors

Andrzej ŁUKASZEWICZ 

Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Operation, Wiejska 45 c, 15-351 Białystok Poland
https://orcid.org/0000-0003-0373-4803

Authors

Jerzy JÓZWIK 
j.jozwik@pollub.pl
Poland

Authors

Kamil CYBUL 

Lublin University of Technology, Doctoral School at the Lublin University of Technology, Nadbystrzycka 38 B/406, 20-618 Lublin Poland

Statistics

Abstract views: 480
PDF downloads: 151


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.