MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Article Sidebar
Open full text
Issue Vol. 20 No. 2 (2024)
-
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Mohamed ELBAHRI, Nasreddine TALEB, Sid Ahmed El Mehdi ARDJOUN, Chakib Mustapha Anouar ZOUAOUI1-23
-
DIGITAL NEWS CLASSIFICATION AND PUNCTUACTION USING MACHINE LEARNING AND TEXT MINING TECHNIQUES
Fernando Andrés CEVALLOS SALAS24-42
-
MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK, Magdalena ZAWADA-MICHAŁOWSKA, Monika KULISZ, Paweł TOMIŁO, Marcin BARSZCZ, Paweł PIEŚKO, Michał LELEŃ, Kamil CYBUL43-59
-
EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN60-74
-
THE UTILIZATION OF 6G IN INDUSTRY 4.0
Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE75-89
-
APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY
Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI90-108
-
PREDICTING STATES OF EPILEPSY PATIENTS USING DEEP LEARNING MODELS
Boutkhil SIDAOUI109-125
-
IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS
Amina KINANE DAOUADJI, Fatima BENDELLA126-137
-
EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0
Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ138-156
-
AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM
Krzysztof NIEMIEC, Grzegorz BOCEWICZ157-174
-
PREDICTION OF PATIENT’S WILLINGNESS FOR TREATMENT OF MENTAL ILLNESS USING MACHINE LEARNING APPROACHES
Mohammed Chachan YOUNIS175-193
-
AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING
Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH; Yaroslava RAFALSKA; Andrii MOMOT194-204
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper explores the application of various machine learning techniques to model the optimal measurement time required after machining with a probe on CNC machine tools. Specifically, the research employs four different machine learning models: Elastic Net, Neural Networks, Decision Trees, and Support Vector Machines, each chosen for their unique strengths in addressing different aspects of predictive modeling in an industrial context. The study examines as input parameters such as material type, post-processing wall thickness, cutting depth, and rotational speed over measurement time. This approach ensures that the models account for the variables that significantly affect CNC machine operations. Regression value, mean square error, root mean square error, mean absolute percentage error, and mean absolute error were used to evaluate the quality of the obtained models. As a result of the analyses, the best modeling results were obtained using neural networks. Their ability to accurately predict measurement times can significantly increase operational efficiency by optimizing schedules and reducing downtime in machining processes.
Keywords:
References
Arachchige, A., Sugathadasa, R., Herath, O. & Thibbotuwawa, A. (2021). Artificial neural network based demand forecasting integrated with federal funds rate. Applied Computer Science, 17(4), 34–44. https://doi.org/10.23743/ACS-2021-27 DOI: https://doi.org/10.35784/acs-2021-27
Biruk-Urban, K., Zagórski, I., Kulisz, M. & Leleń, M. (2023). Analysis of vibration, deflection angle and surface roughness in water-jet cutting of AZ91D magnesium alloy and simulation of selected surface roughness parameters using ANN. Materials, 16(9), 3384. https://doi.org/10.3390/MA16093384 DOI: https://doi.org/10.3390/ma16093384
Blecha, P., Holub, M., Marek, T., Jankovych, R., Misun, F., Smolik, J. & Machalka, M. (2022). Capability of measurement with a touch probe on CNC machine tools. Measurement, 195, 111153. https://doi.org/10.1016/J.MEASUREMENT.2022.111153 DOI: https://doi.org/10.1016/j.measurement.2022.111153
Bobrov, V. F. (1975). Basics of metal cutting theory. Mechanical engineering.
Fleischer, J., Pabst, R. & Kelemen, S. (2007). Heat flow simulation for dry machining of power train castings. CIRP Annals, 56(1), 117–122. https://doi.org/10.1016/J.CIRP.2007.05.030 DOI: https://doi.org/10.1016/j.cirp.2007.05.030
Guiassa, R. & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals, 60(1), 391–394. https://doi.org/10.1016/J.CIRP.2011.03.123 DOI: https://doi.org/10.1016/j.cirp.2011.03.123
Jacniacka, E. & Semotiuk, L. (2011). Odkształcenia cieplne a niedokładność pomiaru sondą przedmiotową. Pomiary Automatyka Kontrola, 57(9), 985–988.
Jacniacka, E., Semotiuk, L. & Pieśko, P. (2010). Niepewność pomiaru wewnątrzobrabiarkowego systemu pomiarowego z zastosowaniem sondy OMP 60. Przegląd Mechaniczny, 6, 36–42.
Kamieńska-Krzowska, B., Semotiuk, L. & Czerw, M. (2007). Analiza możliwości zastosowania sondy przedmiotowej do kontroli czynnej na pionowym centrum obróbkowym FV 580A. Acta Mechanica et Automatica, 1(2), 19–24.
Kizaki, T., Tsujimura, S., Marukawa, Y., Morimoto, S. & Kobayashi, H. (2021). Robust and accurate prediction of thermal error of machining centers under operations with cutting fluid supply. CIRP Annals, 70(1), 325–328. https://doi.org/10.1016/J.CIRP.2021.04.074 DOI: https://doi.org/10.1016/j.cirp.2021.04.074
Kulisz, M., Zagórski, I., Józwik, J. & Korpysa, J. (2022a). Research, modelling and prediction of the influence of technological parameters on the selected 3D roughness parameters, as well as temperature, shape and geometry of chips in milling AZ91D Alloy. Materials, 15(12), 4277. https://doi.org/10.3390/ma15124277 DOI: https://doi.org/10.3390/ma15124277
Kulisz, M., Zagórski, I., Weremczuk, A., Rusinek, R. & Korpysa, J. (2022b). Analysis and prediction of the impact of technological parameters on cutting force components in rough milling of AZ31 magnesium alloy. Archives of Civil and Mechanical Engineering, 22, 1. https://doi.org/10.1007/s43452-021-00319-y DOI: https://doi.org/10.1007/s43452-021-00319-y
Kulisz, M., Józwik, J., Barszcz, M., Pieśko, P., Zawada- Michałowska, M. & Leleń, M. (n.d.). Process analysis, optimization and modeling of time measuring of the workpiece using an inspection probe on a CNC machine tool. Metrology and Hallmark, Central Office of Measures. In press.
Kulisz, M., Kujawska, J., Aubakirova, Z., Zhairbaeva, G. & Warowny, T. (2022c). Prediction of the compressive strength of environmentally friendly concrete using artificial neural network. Applied Computer Science, 18(4), 68–81. https://doi.org/10.35784/ACS-2022-29 DOI: https://doi.org/10.35784/acs-2022-29
Kwon, Y., Jeong, M. K. & Omitaomu, O. A. (2006a). Adaptive support vector regression analysis of closed-loop inspection accuracy. International Journal of Machine Tools and Manufacture, 46(6), 603–610. https://doi.org/10.1016/J.IJMACHTOOLS.2005.07.011 DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.011
Kwon, Y., Tseng, T. L. & Ertekin, Y. (2006b). Characterization of closed-loop measurement accuracy in precision CNC milling. Robotics and Computer-Integrated Manufacturing, 22(4), 288–296. https://doi.org/10.1016/J.RCIM.2005.06.002 DOI: https://doi.org/10.1016/j.rcim.2005.06.002
Li, K.-M. & Liang, S. Y. (2006). Modeling of cutting temperature in near dry machining. Journal of Manufacturing Science and Engineering, 128(2), 416–424. https://doi.org/10.1115/1.2162907 DOI: https://doi.org/10.1115/1.2162907
Moriwaki, T., Horiuchi, A. & Okuda, K. (1990). Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Annals, 39(1), 81–84. https://doi.org/10.1016/S0007-8506(07)61007-5 DOI: https://doi.org/10.1016/S0007-8506(07)61007-5
Olszak, W. (2008). Obróbka Skrawaniem. WNT.
Pieśko, P., Zawada-Michałowska, M. & Józwik, J. (2023). Influence of thermal deformations on accuracy measurement with an inspection probe. 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 280–284). IEEE. https://doi.org/10.1109/METROAEROSPACE57412.2023.10190043 DOI: https://doi.org/10.1109/MetroAeroSpace57412.2023.10190043
Putz, M., Schmidt, G., Semmler, U., Oppermann, C., Bräunig, M. & Karagüzel, U. (2016). Modeling of heat fluxes during machining and their effects on thermal deformation of the cutting tool. Procedia CIRP, 46, 611–614. https://doi.org/10.1016/J.PROCIR.2016.04.046 DOI: https://doi.org/10.1016/j.procir.2016.04.046
Sałamacha, D. & Józwik, J. (2023). Evaluation of measurement uncertainty obtained with a tool probe on a CNC machine tool. MANUFACTURING TECHNOLOGY, 23(4), 513–524. https://doi.org/10.21062/mft.2023.051 DOI: https://doi.org/10.21062/mft.2023.051
Shi, H., Xiao, Y., Mei, X., Tao, T. & Wang, H. (2023). Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. ISA Transactions, 135, 575–584. https://doi.org/10.1016/J.ISATRA.2022.09.043 DOI: https://doi.org/10.1016/j.isatra.2022.09.043
Wang, S., To, S., Chan, C. Y., Cheung, C. F. & Lee, W. B. (2010). A study of the cutting-induced heating effect on the machined surface in ultra-precision raster milling of 6061 Al alloy. International Journal of Advanced Manufacturing Technology, 51, 69–78. https://doi.org/10.1007/s00170-010-2613-7 DOI: https://doi.org/10.1007/s00170-010-2613-7
Weck, M., McKeown, P., Bonse, R. & Herbst, U. (1995). Reduction and compensation of thermal errors in machine tools. CIRP Annals, 44(2), 589–598. https://doi.org/10.1016/S0007-8506(07)60506-X DOI: https://doi.org/10.1016/S0007-8506(07)60506-X
Article Details
Abstract views: 474
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
