MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS

Jerzy JÓZWIK


(Poland)

Magdalena ZAWADA-MICHAŁOWSKA


(Poland)

Monika KULISZ


(Poland)

Paweł TOMIŁO


(Poland)

Marcin BARSZCZ


(Poland)

Paweł PIEŚKO

p.piesko@pollub.pl
a:1:{s:5:"en_US";s:21:"Politechnika Lubelska";} (Poland)

Michał LELEŃ


(Poland)

Kamil CYBUL


(Poland)

Abstract

This paper explores the application of various machine learning techniques to model the optimal measurement time required after machining with a probe on CNC machine tools. Specifically, the research employs four different machine learning models: Elastic Net, Neural Networks, Decision Trees, and Support Vector Machines, each chosen for their unique strengths in addressing different aspects of predictive modeling in an industrial context. The study examines as input parameters such as material type, post-processing wall thickness, cutting depth, and rotational speed over measurement time. This approach ensures that the models account for the variables that significantly affect CNC machine operations. Regression value, mean square error, root mean square error, mean absolute percentage error, and mean absolute error were used to evaluate the quality of the obtained models. As a result of the analyses, the best modeling results were obtained using neural networks. Their ability to accurately predict measurement times can significantly increase operational efficiency by optimizing schedules and reducing downtime in machining processes.


Keywords:

optimal measurement time, CNC machine tool, machine learning methods

Arachchige, A., Sugathadasa, R., Herath, O. & Thibbotuwawa, A. (2021). Artificial neural network based demand forecasting integrated with federal funds rate. Applied Computer Science, 17(4), 34–44. https://doi.org/10.23743/ACS-2021-27
DOI: https://doi.org/10.35784/acs-2021-27   Google Scholar

Biruk-Urban, K., Zagórski, I., Kulisz, M. & Leleń, M. (2023). Analysis of vibration, deflection angle and surface roughness in water-jet cutting of AZ91D magnesium alloy and simulation of selected surface roughness parameters using ANN. Materials, 16(9), 3384. https://doi.org/10.3390/MA16093384
DOI: https://doi.org/10.3390/ma16093384   Google Scholar

Blecha, P., Holub, M., Marek, T., Jankovych, R., Misun, F., Smolik, J. & Machalka, M. (2022). Capability of measurement with a touch probe on CNC machine tools. Measurement, 195, 111153. https://doi.org/10.1016/J.MEASUREMENT.2022.111153
DOI: https://doi.org/10.1016/j.measurement.2022.111153   Google Scholar

Bobrov, V. F. (1975). Basics of metal cutting theory. Mechanical engineering.
  Google Scholar

Fleischer, J., Pabst, R. & Kelemen, S. (2007). Heat flow simulation for dry machining of power train castings. CIRP Annals, 56(1), 117–122. https://doi.org/10.1016/J.CIRP.2007.05.030
DOI: https://doi.org/10.1016/j.cirp.2007.05.030   Google Scholar

Guiassa, R. & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals, 60(1), 391–394. https://doi.org/10.1016/J.CIRP.2011.03.123
DOI: https://doi.org/10.1016/j.cirp.2011.03.123   Google Scholar

Jacniacka, E. & Semotiuk, L. (2011). Odkształcenia cieplne a niedokładność pomiaru sondą przedmiotową. Pomiary Automatyka Kontrola, 57(9), 985–988.
  Google Scholar

Jacniacka, E., Semotiuk, L. & Pieśko, P. (2010). Niepewność pomiaru wewnątrzobrabiarkowego systemu pomiarowego z zastosowaniem sondy OMP 60. Przegląd Mechaniczny, 6, 36–42.
  Google Scholar

Kamieńska-Krzowska, B., Semotiuk, L. & Czerw, M. (2007). Analiza możliwości zastosowania sondy przedmiotowej do kontroli czynnej na pionowym centrum obróbkowym FV 580A. Acta Mechanica et Automatica, 1(2), 19–24.
  Google Scholar

Kizaki, T., Tsujimura, S., Marukawa, Y., Morimoto, S. & Kobayashi, H. (2021). Robust and accurate prediction of thermal error of machining centers under operations with cutting fluid supply. CIRP Annals, 70(1), 325–328. https://doi.org/10.1016/J.CIRP.2021.04.074
DOI: https://doi.org/10.1016/j.cirp.2021.04.074   Google Scholar

Kulisz, M., Zagórski, I., Józwik, J. & Korpysa, J. (2022a). Research, modelling and prediction of the influence of technological parameters on the selected 3D roughness parameters, as well as temperature, shape and geometry of chips in milling AZ91D Alloy. Materials, 15(12), 4277. https://doi.org/10.3390/ma15124277
DOI: https://doi.org/10.3390/ma15124277   Google Scholar

Kulisz, M., Zagórski, I., Weremczuk, A., Rusinek, R. & Korpysa, J. (2022b). Analysis and prediction of the impact of technological parameters on cutting force components in rough milling of AZ31 magnesium alloy. Archives of Civil and Mechanical Engineering, 22, 1. https://doi.org/10.1007/s43452-021-00319-y
DOI: https://doi.org/10.1007/s43452-021-00319-y   Google Scholar

Kulisz, M., Józwik, J., Barszcz, M., Pieśko, P., Zawada- Michałowska, M. & Leleń, M. (n.d.). Process analysis, optimization and modeling of time measuring of the workpiece using an inspection probe on a CNC machine tool. Metrology and Hallmark, Central Office of Measures. In press.
  Google Scholar

Kulisz, M., Kujawska, J., Aubakirova, Z., Zhairbaeva, G. & Warowny, T. (2022c). Prediction of the compressive strength of environmentally friendly concrete using artificial neural network. Applied Computer Science, 18(4), 68–81. https://doi.org/10.35784/ACS-2022-29
DOI: https://doi.org/10.35784/acs-2022-29   Google Scholar

Kwon, Y., Jeong, M. K. & Omitaomu, O. A. (2006a). Adaptive support vector regression analysis of closed-loop inspection accuracy. International Journal of Machine Tools and Manufacture, 46(6), 603–610. https://doi.org/10.1016/J.IJMACHTOOLS.2005.07.011
DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.011   Google Scholar

Kwon, Y., Tseng, T. L. & Ertekin, Y. (2006b). Characterization of closed-loop measurement accuracy in precision CNC milling. Robotics and Computer-Integrated Manufacturing, 22(4), 288–296. https://doi.org/10.1016/J.RCIM.2005.06.002
DOI: https://doi.org/10.1016/j.rcim.2005.06.002   Google Scholar

Li, K.-M. & Liang, S. Y. (2006). Modeling of cutting temperature in near dry machining. Journal of Manufacturing Science and Engineering, 128(2), 416–424. https://doi.org/10.1115/1.2162907
DOI: https://doi.org/10.1115/1.2162907   Google Scholar

Moriwaki, T., Horiuchi, A. & Okuda, K. (1990). Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Annals, 39(1), 81–84. https://doi.org/10.1016/S0007-8506(07)61007-5
DOI: https://doi.org/10.1016/S0007-8506(07)61007-5   Google Scholar

Olszak, W. (2008). Obróbka Skrawaniem. WNT.
  Google Scholar

Pieśko, P., Zawada-Michałowska, M. & Józwik, J. (2023). Influence of thermal deformations on accuracy measurement with an inspection probe. 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 280–284). IEEE. https://doi.org/10.1109/METROAEROSPACE57412.2023.10190043
DOI: https://doi.org/10.1109/MetroAeroSpace57412.2023.10190043   Google Scholar

Putz, M., Schmidt, G., Semmler, U., Oppermann, C., Bräunig, M. & Karagüzel, U. (2016). Modeling of heat fluxes during machining and their effects on thermal deformation of the cutting tool. Procedia CIRP, 46, 611–614. https://doi.org/10.1016/J.PROCIR.2016.04.046
DOI: https://doi.org/10.1016/j.procir.2016.04.046   Google Scholar

Sałamacha, D. & Józwik, J. (2023). Evaluation of measurement uncertainty obtained with a tool probe on a CNC machine tool. MANUFACTURING TECHNOLOGY, 23(4), 513–524. https://doi.org/10.21062/mft.2023.051
DOI: https://doi.org/10.21062/mft.2023.051   Google Scholar

Shi, H., Xiao, Y., Mei, X., Tao, T. & Wang, H. (2023). Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. ISA Transactions, 135, 575–584. https://doi.org/10.1016/J.ISATRA.2022.09.043
DOI: https://doi.org/10.1016/j.isatra.2022.09.043   Google Scholar

Wang, S., To, S., Chan, C. Y., Cheung, C. F. & Lee, W. B. (2010). A study of the cutting-induced heating effect on the machined surface in ultra-precision raster milling of 6061 Al alloy. International Journal of Advanced Manufacturing Technology, 51, 69–78. https://doi.org/10.1007/s00170-010-2613-7
DOI: https://doi.org/10.1007/s00170-010-2613-7   Google Scholar

Weck, M., McKeown, P., Bonse, R. & Herbst, U. (1995). Reduction and compensation of thermal errors in machine tools. CIRP Annals, 44(2), 589–598. https://doi.org/10.1016/S0007-8506(07)60506-X
DOI: https://doi.org/10.1016/S0007-8506(07)60506-X   Google Scholar

Download


Published
2024-06-30

Cited by

JÓZWIK, J., ZAWADA-MICHAŁOWSKA, M., KULISZ, M., TOMIŁO, P., BARSZCZ, M., PIEŚKO, P., … CYBUL, K. (2024). MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS. Applied Computer Science, 20(2), 43–59. https://doi.org/10.35784/acs-2024-15

Authors

Jerzy JÓZWIK 

Poland

Authors

Magdalena ZAWADA-MICHAŁOWSKA 

Poland

Authors

Monika KULISZ 

Poland

Authors

Paweł TOMIŁO 

Poland

Authors

Marcin BARSZCZ 

Poland

Authors

Paweł PIEŚKO 
p.piesko@pollub.pl
a:1:{s:5:"en_US";s:21:"Politechnika Lubelska";} Poland

Authors

Michał LELEŃ 

Poland

Authors

Kamil CYBUL 

Poland

Statistics

Abstract views: 214
PDF downloads: 64


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.