MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals (Poland)
https://orcid.org/0000-0002-8845-0764
Magdalena ZAWADA-MICHAŁOWSKA
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals (Poland)
https://orcid.org/0000-0003-3330-6340
Monika KULISZ
Lublin University of Technology, Management Faculty, Department of Enterprise Organisation (Poland)
https://orcid.org/0000-0002-8111-2316
Paweł TOMIŁO
Lublin University of Technology, Management Faculty, Department of Quantitative Methods (Poland)
https://orcid.org/0000-0003-4461-3194
Marcin BARSZCZ
Lublin University of Technology, Electrical Engineering and Computer Science Faculty, Department of Computer Science (Poland)
https://orcid.org/0000-0002-9061-4414
Paweł PIEŚKO
p.piesko@pollub.plLublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals (Poland)
https://orcid.org/0000-0002-4152-5159
Michał LELEŃ
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals (Poland)
https://orcid.org/0000-0002-6398-4014
Kamil CYBUL
Lublin University of Technology, Doctoral School (Poland)
https://orcid.org/0009-0008-4321-3045
Abstract
This paper explores the application of various machine learning techniques to model the optimal measurement time required after machining with a probe on CNC machine tools. Specifically, the research employs four different machine learning models: Elastic Net, Neural Networks, Decision Trees, and Support Vector Machines, each chosen for their unique strengths in addressing different aspects of predictive modeling in an industrial context. The study examines as input parameters such as material type, post-processing wall thickness, cutting depth, and rotational speed over measurement time. This approach ensures that the models account for the variables that significantly affect CNC machine operations. Regression value, mean square error, root mean square error, mean absolute percentage error, and mean absolute error were used to evaluate the quality of the obtained models. As a result of the analyses, the best modeling results were obtained using neural networks. Their ability to accurately predict measurement times can significantly increase operational efficiency by optimizing schedules and reducing downtime in machining processes.
Keywords:
optimal measurement time, CNC machine tool, machine learning methodsReferences
Arachchige, A., Sugathadasa, R., Herath, O. & Thibbotuwawa, A. (2021). Artificial neural network based demand forecasting integrated with federal funds rate. Applied Computer Science, 17(4), 34–44. https://doi.org/10.23743/ACS-2021-27
DOI: https://doi.org/10.35784/acs-2021-27
Google Scholar
Biruk-Urban, K., Zagórski, I., Kulisz, M. & Leleń, M. (2023). Analysis of vibration, deflection angle and surface roughness in water-jet cutting of AZ91D magnesium alloy and simulation of selected surface roughness parameters using ANN. Materials, 16(9), 3384. https://doi.org/10.3390/MA16093384
DOI: https://doi.org/10.3390/ma16093384
Google Scholar
Blecha, P., Holub, M., Marek, T., Jankovych, R., Misun, F., Smolik, J. & Machalka, M. (2022). Capability of measurement with a touch probe on CNC machine tools. Measurement, 195, 111153. https://doi.org/10.1016/J.MEASUREMENT.2022.111153
DOI: https://doi.org/10.1016/j.measurement.2022.111153
Google Scholar
Bobrov, V. F. (1975). Basics of metal cutting theory. Mechanical engineering.
Google Scholar
Fleischer, J., Pabst, R. & Kelemen, S. (2007). Heat flow simulation for dry machining of power train castings. CIRP Annals, 56(1), 117–122. https://doi.org/10.1016/J.CIRP.2007.05.030
DOI: https://doi.org/10.1016/j.cirp.2007.05.030
Google Scholar
Guiassa, R. & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals, 60(1), 391–394. https://doi.org/10.1016/J.CIRP.2011.03.123
DOI: https://doi.org/10.1016/j.cirp.2011.03.123
Google Scholar
Jacniacka, E. & Semotiuk, L. (2011). Odkształcenia cieplne a niedokładność pomiaru sondą przedmiotową. Pomiary Automatyka Kontrola, 57(9), 985–988.
Google Scholar
Jacniacka, E., Semotiuk, L. & Pieśko, P. (2010). Niepewność pomiaru wewnątrzobrabiarkowego systemu pomiarowego z zastosowaniem sondy OMP 60. Przegląd Mechaniczny, 6, 36–42.
Google Scholar
Kamieńska-Krzowska, B., Semotiuk, L. & Czerw, M. (2007). Analiza możliwości zastosowania sondy przedmiotowej do kontroli czynnej na pionowym centrum obróbkowym FV 580A. Acta Mechanica et Automatica, 1(2), 19–24.
Google Scholar
Kizaki, T., Tsujimura, S., Marukawa, Y., Morimoto, S. & Kobayashi, H. (2021). Robust and accurate prediction of thermal error of machining centers under operations with cutting fluid supply. CIRP Annals, 70(1), 325–328. https://doi.org/10.1016/J.CIRP.2021.04.074
DOI: https://doi.org/10.1016/j.cirp.2021.04.074
Google Scholar
Kulisz, M., Zagórski, I., Józwik, J. & Korpysa, J. (2022a). Research, modelling and prediction of the influence of technological parameters on the selected 3D roughness parameters, as well as temperature, shape and geometry of chips in milling AZ91D Alloy. Materials, 15(12), 4277. https://doi.org/10.3390/ma15124277
DOI: https://doi.org/10.3390/ma15124277
Google Scholar
Kulisz, M., Zagórski, I., Weremczuk, A., Rusinek, R. & Korpysa, J. (2022b). Analysis and prediction of the impact of technological parameters on cutting force components in rough milling of AZ31 magnesium alloy. Archives of Civil and Mechanical Engineering, 22, 1. https://doi.org/10.1007/s43452-021-00319-y
DOI: https://doi.org/10.1007/s43452-021-00319-y
Google Scholar
Kulisz, M., Józwik, J., Barszcz, M., Pieśko, P., Zawada- Michałowska, M. & Leleń, M. (n.d.). Process analysis, optimization and modeling of time measuring of the workpiece using an inspection probe on a CNC machine tool. Metrology and Hallmark, Central Office of Measures. In press.
Google Scholar
Kulisz, M., Kujawska, J., Aubakirova, Z., Zhairbaeva, G. & Warowny, T. (2022c). Prediction of the compressive strength of environmentally friendly concrete using artificial neural network. Applied Computer Science, 18(4), 68–81. https://doi.org/10.35784/ACS-2022-29
DOI: https://doi.org/10.35784/acs-2022-29
Google Scholar
Kwon, Y., Jeong, M. K. & Omitaomu, O. A. (2006a). Adaptive support vector regression analysis of closed-loop inspection accuracy. International Journal of Machine Tools and Manufacture, 46(6), 603–610. https://doi.org/10.1016/J.IJMACHTOOLS.2005.07.011
DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.011
Google Scholar
Kwon, Y., Tseng, T. L. & Ertekin, Y. (2006b). Characterization of closed-loop measurement accuracy in precision CNC milling. Robotics and Computer-Integrated Manufacturing, 22(4), 288–296. https://doi.org/10.1016/J.RCIM.2005.06.002
DOI: https://doi.org/10.1016/j.rcim.2005.06.002
Google Scholar
Li, K.-M. & Liang, S. Y. (2006). Modeling of cutting temperature in near dry machining. Journal of Manufacturing Science and Engineering, 128(2), 416–424. https://doi.org/10.1115/1.2162907
DOI: https://doi.org/10.1115/1.2162907
Google Scholar
Moriwaki, T., Horiuchi, A. & Okuda, K. (1990). Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Annals, 39(1), 81–84. https://doi.org/10.1016/S0007-8506(07)61007-5
DOI: https://doi.org/10.1016/S0007-8506(07)61007-5
Google Scholar
Olszak, W. (2008). Obróbka Skrawaniem. WNT.
Google Scholar
Pieśko, P., Zawada-Michałowska, M. & Józwik, J. (2023). Influence of thermal deformations on accuracy measurement with an inspection probe. 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 280–284). IEEE. https://doi.org/10.1109/METROAEROSPACE57412.2023.10190043
DOI: https://doi.org/10.1109/MetroAeroSpace57412.2023.10190043
Google Scholar
Putz, M., Schmidt, G., Semmler, U., Oppermann, C., Bräunig, M. & Karagüzel, U. (2016). Modeling of heat fluxes during machining and their effects on thermal deformation of the cutting tool. Procedia CIRP, 46, 611–614. https://doi.org/10.1016/J.PROCIR.2016.04.046
DOI: https://doi.org/10.1016/j.procir.2016.04.046
Google Scholar
Sałamacha, D. & Józwik, J. (2023). Evaluation of measurement uncertainty obtained with a tool probe on a CNC machine tool. MANUFACTURING TECHNOLOGY, 23(4), 513–524. https://doi.org/10.21062/mft.2023.051
DOI: https://doi.org/10.21062/mft.2023.051
Google Scholar
Shi, H., Xiao, Y., Mei, X., Tao, T. & Wang, H. (2023). Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. ISA Transactions, 135, 575–584. https://doi.org/10.1016/J.ISATRA.2022.09.043
DOI: https://doi.org/10.1016/j.isatra.2022.09.043
Google Scholar
Wang, S., To, S., Chan, C. Y., Cheung, C. F. & Lee, W. B. (2010). A study of the cutting-induced heating effect on the machined surface in ultra-precision raster milling of 6061 Al alloy. International Journal of Advanced Manufacturing Technology, 51, 69–78. https://doi.org/10.1007/s00170-010-2613-7
DOI: https://doi.org/10.1007/s00170-010-2613-7
Google Scholar
Weck, M., McKeown, P., Bonse, R. & Herbst, U. (1995). Reduction and compensation of thermal errors in machine tools. CIRP Annals, 44(2), 589–598. https://doi.org/10.1016/S0007-8506(07)60506-X
DOI: https://doi.org/10.1016/S0007-8506(07)60506-X
Google Scholar
Authors
Jerzy JÓZWIKLublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals Poland
https://orcid.org/0000-0002-8845-0764
Authors
Magdalena ZAWADA-MICHAŁOWSKALublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals Poland
https://orcid.org/0000-0003-3330-6340
Authors
Monika KULISZLublin University of Technology, Management Faculty, Department of Enterprise Organisation Poland
https://orcid.org/0000-0002-8111-2316
Authors
Paweł TOMIŁOLublin University of Technology, Management Faculty, Department of Quantitative Methods Poland
https://orcid.org/0000-0003-4461-3194
Authors
Marcin BARSZCZLublin University of Technology, Electrical Engineering and Computer Science Faculty, Department of Computer Science Poland
https://orcid.org/0000-0002-9061-4414
Authors
Paweł PIEŚKOp.piesko@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals Poland
https://orcid.org/0000-0002-4152-5159
Authors
Michał LELEŃLublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals Poland
https://orcid.org/0000-0002-6398-4014
Authors
Kamil CYBULLublin University of Technology, Doctoral School Poland
https://orcid.org/0009-0008-4321-3045
Statistics
Abstract views: 318PDF downloads: 88
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL, IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY , Applied Computer Science: Vol. 19 No. 3 (2023)
- Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA, USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY , Applied Computer Science: Vol. 13 No. 1 (2017)
- Monika KULISZ, Aigerim DUISENBEKOVA, Justyna KUJAWSKA, Danira KALDYBAYEVA, Bibigul ISSAYEVA, Piotr LICHOGRAJ, Wojciech CEL, IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Sylwester KORGA, Kamil ŻYŁA, Jerzy JÓZWIK, Jarosław PYTKA, Kamil CYBUL, PREDICTIVE TOOLS AS PART OF DECISSION AIDING PROCESSES AT THE AIRPORT – THE CASE OF FACEBOOK PROPHET LIBRARY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Monika KULISZ, EVALUATION OF SAP SYSTEM IMPLEMENTATION IN AN ENTERPRISE OF THE AUTOMOTIVE INDUSTRY – CASE STUDY , Applied Computer Science: Vol. 14 No. 4 (2018)
- Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY, PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 18 No. 4 (2022)
- Sylwester KORGA, Marcin BARSZCZ, Krzysztof DZIEDZIC, DEVELOPMENT OF SOFTWARE FOR IDENTIFICATION OF FILAMENTS USED IN 3D PRINTING TECHNOLOGY , Applied Computer Science: Vol. 15 No. 1 (2019)
Similar Articles
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
- Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED, PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Shahil SHARMA, Rajnesh LAL, Bimal KUMAR, DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH , Applied Computer Science: Vol. 20 No. 3 (2024)
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Amina ALYAMANI, Oleh YASNIY, CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING , Applied Computer Science: Vol. 16 No. 4 (2020)
- Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, Anna MACHROWSKA, Marcin MACIEJEWSKI, COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES , Applied Computer Science: Vol. 19 No. 4 (2023)
- Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO, CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ, EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Miguel Angel BELLO RIVERA, Carlos Alberto REYES GARCÍA, Tania Cristal TALAVERA ROJAS, Perfecto Malaquías QUINTERO FLORES, Rodolfo Eleazar PÉREZ LOAIZA, AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 19 No. 4 (2023)
- Amina KINANE DAOUADJI, Fatima BENDELLA, IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS , Applied Computer Science: Vol. 20 No. 2 (2024)
You may also start an advanced similarity search for this article.