PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK
Article Sidebar
Open full text
Issue Vol. 18 No. 4 (2022)
-
APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION
Jarosław GIL, Andrzej POLAŃSKI5-15
-
HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS
Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL16-27
-
DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES
Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA28-52
-
ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION
Edyta ŁUKASIK, Emilia ŁABUĆ53-67
-
PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK
Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY68-81
-
NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES
Łukasz SEMKŁO, Łukasz GIERZ82-95
-
A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS
Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI96-115
-
IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS
Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA116-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper evaluated the possibility of using artificial neural network models for predicting the compressive strength (Fc) of concretes with the addition of recycled concrete aggregate (RCA). The artificial neural network (ANN) approaches were used for three variable processes modeling (cement content in the range of 250 to 400 kg/m3, percentage of recycled concrete aggregate from 25% to 100% and the ratios of water contents 0.45 to 0.6). The results indicate that the compressive strength of recycled concrete at 3, 7 and 28 days is strongly influenced by the cement content, %RCA and the ratios of water contents. It is found that the compressive strength at 3, 7 and 28 days decreases when increasing RCA from 25% to 100%. The obtained MLP and RBF networks are characterized by satisfactory capacity for prediction of the compressive strength of concretes with recycled concrete aggregate (RCA) addition. The results in statistical terms; correlation coefficient (R) reveals that the both ANN approaches are powerful tools for the prediction of the compressive strength.
Keywords:
References
Anysz, H., & Narloch, P. (2019). Designing the composition of cement stabilized rammed earth using artificial neural networks. Materials, 12(9), 1396. https://doi.org/10.3390/ma12091396 DOI: https://doi.org/10.3390/ma12091396
Atici, U. (2011). Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Systems with Applications, 38(8), 9609–9618. https://doi.org/10.1016/j.eswa.2011.01.156 DOI: https://doi.org/10.1016/j.eswa.2011.01.156
British Standards Institution. (1988). British DOE (Department of Environment) Method (1988) Design of Normal Concrete Mixes. British Standards Institution. (2009). BS EN 12390-3:2009 Testing hardened concrete. Compressive strength of
test specimens. https://bsol.bsigroup.com/en/Bsol-Item-Detail-Page/?pid=000000000030164906
CEM II/B-V 32,5 R. (n.d.). Lafarge. Retrieved June 10, 2022 from https://www.lafarge.pl/cement-cem-iib-v325-r-disabled-page
Chen, H., Qian, C., Liang, C., & Kang, W. (2018). An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191370 DOI: https://doi.org/10.1371/journal.pone.0191370
Chopra, P., Kumar, R., & Kumar, M. (2015). Artificial Neural Networks for the Prediction of Compressive Strength of Concrete. International Journal of Applied Science and Engineering, 13, 187–204.
Chou, J., Chiu, C., Farofura, M., & Al-Tharawa, I. (2011). Optimizing the Prediction Accuracy of Concrete compressive Strength Based on a Comparison of Data-Mining Techniques. Journal of Computing in Civil Engineering, 25(3), 1171. DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088
Dahmoune, F., Remini, H., Dairi, S., Aoun, O., Moussi, K., Bouaoudia-Madi, N., Adjeroud, N., Kadri, N., Lefsih, K., Boughani, L., Mouni, L., Nayak, B., & Madani, K. (2015). Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: Comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. Industrial Crops and Products, 77(0926–6690), 251–261. https://doi.org/https://doi.org/10.1016/j.indcrop.2015.08.062 DOI: https://doi.org/10.1016/j.indcrop.2015.08.062
Dantas, A. T. A., Leite, M. B., & Nagahama, K. J. (2013). Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Construction and Building Materials, 38, 717–722. https://doi.org/10.1016/j.conbuildmat.2012.09.026 DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.026
Das, S., Swetapadma, A., & Panigrahi, C. (2019). A study on the application of artificial intelligence techniques for predicting the heating and cooling loads of buildings. Journal of Green Building, 14(3), 115–128. https://doi.org/10.3992/1943-4618.14.3.115 DOI: https://doi.org/10.3992/1943-4618.14.3.115
Deepa, C., Kumari, K. S., & Sudha, V. P. (2010). Prediction of the compressive strength of high performance concrete mix using tree based modeling. International Journal of Computer Applications, 6(5), 0975–8887. DOI: https://doi.org/10.5120/1076-1406
Erdal, H. I., Karakurt, O., & Namli, E. (2013). High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform. Engineering Applications of Artificial Intelligence, 26(4), 1246–1254. https://doi.org/10.1016/j.engappai.2012.10.014 DOI: https://doi.org/10.1016/j.engappai.2012.10.014
Fei, X., Youfu, S., & Xuejun, R. (2019). A simulation analysis method based on PSO-RBF model and its application. Cluster Computing, 22(s1), 2255–2261. https://doi.org/10.1007/s10586-018-2596-y DOI: https://doi.org/10.1007/s10586-018-2596-y
Gjorv, O. D., & Sakai, K. (2014). Concrete Technology for a Sustainable Development in the 21st Century. CRC Press. https://doi.org/https://doi.org/10.1201/9781482272215 DOI: https://doi.org/10.1201/9781482272215
Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials, 209, 425–436. https://doi.org/10.1016/j.conbuildmat.2019.03.119 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.119
Han, Y., Fu, S., Wang, S., & Xie, Z. (2018). Study on Adiabatic Temperature Rise Reflecting Hydration Degree of Concrete. Advances in Materials Science and Engineering, 2018, 435049. https://doi.org/10.1155/2018/1435049 DOI: https://doi.org/10.1155/2018/1435049
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14 DOI: https://doi.org/10.35784/acs-2022-14
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patellofemoral Joint. Sensors, 22(10), 3765. http://dx.doi.org/10.3390/s22103765 DOI: https://doi.org/10.3390/s22103765
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors, 22(6), 2176. http://dx.doi.org/10.3390/s22062176 DOI: https://doi.org/10.3390/s22062176
Kurpinska, M., & Kułak, L. (2019). Predicting performance of lightweight concrete with granulated expanded Glass and Ash aggregate by means of using Artificial Neural Networks. Materials, 12(12), 2002. https://doi.org/10.3390/ma12122002 DOI: https://doi.org/10.3390/ma12122002
Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020a). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88-101. https://doi.org/10.23743/acs-2020-24 DOI: https://doi.org/10.35784/acs-2020-24
Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020b). Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials, 13(23), 5419. http://dx.doi.org/10.3390/ma13235419 DOI: https://doi.org/10.3390/ma13235419
Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 16(January), 213–219. https://doi.org/10.1016/j.jobe.2018.01.007 DOI: https://doi.org/10.1016/j.jobe.2018.01.007
Orosa, J. A., Vergara, D., Costa, Á. M., & Bouzón, R. (2019). A novel method based on neural networks for designing internal coverings in buildings: Energy saving and thermal comfort. Applied Sciences, 9(10), 2140. https://doi.org/10.3390/app9102140 DOI: https://doi.org/10.3390/app9102140
Parichatprecha, R., & Nimityongskul, P. (2009). Analysis of durability of high performance concrete using artificial neural networks. Construction and Building Materials, 23(2), 910–917. https://doi.org/10.1016/j.conbuildmat.2008.04.015 DOI: https://doi.org/10.1016/j.conbuildmat.2008.04.015
Pezeshki, Z., & Mazinani, S. M. (2019). Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: a survey. Artificial Intelligence Review, 52(1), 495–525. https://doi.org/10.1007/s10462-018-9630-6 DOI: https://doi.org/10.1007/s10462-018-9630-6
Pytka, J., Budzyński, P., Tomiło, P., Michałowska, J., Błażejczak, D., Gnapowski, E., Pytka, J., & Gierczak, K. (2022). Measurement of aircraft ground roll distance during takeoff and landing on a grass runway. Measurement, 195, 111130. https://doi.org/10.1016/J.MEASUREMENT.2022.111130 DOI: https://doi.org/10.1016/j.measurement.2022.111130
Qmran, B. A., Chen, Q., Asce, A. M., & Jin, R. (2016). Comparison of Different Data Mining Techniques for Predicting Compressive Strength of Environmentally Friendly Concrete. Journal of Computing in Civil Engineering, 30(6), 2208. DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000596
Rymarczyk, T., Kłosowski, G., Hoła, A., Sikora, J., Wołowiec, T., Tchórzewski, P., & Skowron, S. (2021). Comparison of Machine Learning Methods in Electrical Tomography for Detecting Moisture in Building Walls. Energies, 14(10), 2777. http://dx.doi.org/10.3390/en14102777 DOI: https://doi.org/10.3390/en14102777
Rymarczyk, T., Klosowski, G., Kozlowski, E., & Tchórzewski, P. (2019). Comparison of Selected Machine Learning Algorithms for Industrial Electrical Tomography. Sensors, 19(7), 1521. https://doi.org/10.3390/S19071521 DOI: https://doi.org/10.3390/s19071521
Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials, 15(3), 721. http://dx.doi.org/10.3390/ma15030721 DOI: https://doi.org/10.3390/ma15030721
Szala, M., Awtoniuk, M., Latka, L., MacEk, W., & Branco, R. (2021). Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings. Journal of Physics: Conference Series, 1736(1), 012033. https://doi.org/10.1088/1742-6596/1736/1/012033 DOI: https://doi.org/10.1088/1742-6596/1736/1/012033
Topçu, I. B., & Saridemir, M. (2008). Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Computational Materials Science, 42(1), 74–82. https://doi.org/10.1016/j.commatsci.2007.06.011 DOI: https://doi.org/10.1016/j.commatsci.2007.06.011
Yeh, I. C., & Lien, L. C. (2009). Knowledge discovery of concrete material using Genetic Operation Trees. Expert Systems with Applications, 36(3 PART 2), 5807–5812. https://doi.org/10.1016/j.eswa.2008.07.004 DOI: https://doi.org/10.1016/j.eswa.2008.07.004
Article Details
Abstract views: 336
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
