HYBRID TECHNIQUES TO SOLVE OPTIMIZATION PROBLEMS IN EIT

Tomasz Rymarczyk

tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center (Poland)

Paweł Tchórzewski


Netrix S.A., Research and Development Center (Poland)

Abstract

This paper presents the hybrid algorithm for identification the unknown shape of an interface to solve the inverse problem in electrical impedance tomography. The conductivity values in different regions are determined by the finite element method. The numerical algorithm is a combination of the level set method, Gauss-Newton method and the finite element method. The representation of the shape of the boundary and its evolution during an iterative reconstruction process is achieved by the level set function. The cost of the numerical algorithm is enough effective. These algorithms are a relatively new procedure to overcome this problem.


Keywords:

Inverse Problem, Level Set Method, Electrical Impedance Tomography

Chan T. and Vese L.: Active contours without edges, IEEE Transactions on Image Processing, vol. 10, 2001, 266–277.
  Google Scholar

Ito K., Kunish K., Li Z.: The Level-Set Function Approach to an Inverse Interface Problem. Inverse Problems, 2001, Vol. 17, No. 5, 1225–1242.
  Google Scholar

Lechleiter A., Rieder A.: Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Problems, 24(6), 2008.
  Google Scholar

Li C., Xu C., Gui C., Fox M. D.: Level set evolution without re-initialization. A new variational formulation, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, volume 1, 430–436.
  Google Scholar

Osher S., Sethian J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational Physics, 1988, 79, 12–49.
  Google Scholar

Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York 2003.
  Google Scholar

Osher S., Santosa F.: Level set methods for optimization problems involving geometry and constraints. Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 2001, 171, 272–288.
  Google Scholar

Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography, International Journal of Applied Electromagnetics and Mechanics 08/2016, 1–9.
  Google Scholar

Rymarczyk T., Filipowicz S.F.: The Shape Reconstruction of Unknown Objects for Inverse Problems, Electrical Review, NR 5/2012/3a.
  Google Scholar

Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods, Przegląd Elektrotechniczny, R. 88 NR 7b/2012, 138–140, 2012.
  Google Scholar

Rymarczyk T, Adamkiewicz P., Duda K., Szumowski J., Sikora J.: New Electrical Tomographic Method to Determine Dampness in Historical Buildings, v.65, 2/2016, Achieve of Electrical Engineering, 2016, 273–283.
  Google Scholar

Sethian J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.
  Google Scholar

Sokolowski J., Zochowski A.: On the topological derivative in shape optimization, SIAM Journal on Control and Optimization, vol. 37, 1999, 1251–1272.
  Google Scholar

Smolik W, Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography, Flow Measurement and Instrumentation, Vol. 21, Issue 1, March 2010, 70–77.
  Google Scholar

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination; Meas. Sci. Technol. 2013, Vol. 24 No. 065302.
  Google Scholar

Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics, 2005, vol. 205, no. 1, 357–372.
  Google Scholar

Zhao H.-K., Osher S., Fedkiw R.: Fast Surface Reconstruction using the Level Set Method. 1st IEEE Workshop on Variational and Level Set Methods, in conjunction with the 8th International Conference on Computer Vision (ICCV), Vancouver, Canada, 2001, 194–202.
  Google Scholar

Download


Published
2017-03-03

Cited by

Rymarczyk, T. ., & Tchórzewski, P. . (2017). HYBRID TECHNIQUES TO SOLVE OPTIMIZATION PROBLEMS IN EIT. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(1), 72–75. https://doi.org/10.5604/01.3001.0010.4587

Authors

Tomasz Rymarczyk 
tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center Poland

Authors

Paweł Tchórzewski 

Netrix S.A., Research and Development Center Poland

Statistics

Abstract views: 295
PDF downloads: 63


Most read articles by the same author(s)

<< < 1 2 3 4