IDENTYFIKACJA SZTYWNEJ PRZESZKODY O DOWOLNYM KSZTAŁCIE OŚWIETLONEJ PŁASKĄ FALĄ AKUSTYCZNĄ PRZY UŻYCIU DANYCH Z BLISKIEGO POLA
##plugins.themes.bootstrap3.article.sidebar##
Open full text
Numer Tom 14 Nr 4 (2024)
-
IDENTYFIKACJA SZTYWNEJ PRZESZKODY O DOWOLNYM KSZTAŁCIE OŚWIETLONEJ PŁASKĄ FALĄ AKUSTYCZNĄ PRZY UŻYCIU DANYCH Z BLISKIEGO POLA
Tomasz Rymarczyk, Jan Sikora5-9
-
OBRAZOWANIE OPARTE NA CZĘSTOTLIWOŚCI RADIOWEJ DO LOKALIZACJI WEWNĄTRZ POMIESZCZEŃ Z WYKORZYSTANIEM TECHNIK BEZPAMIĘCIOWYCH I TECHNOLOGII BEZPRZEWODOWEJ
Tammineni Shanmukha Prasanthi, Swarajya Madhuri Rayavarapu, Gottapu Sasibhushana Rao, Raj Kumar Goswami, Gottapu Santosh Kumar10-15
-
INTELIGENTNA TECHNOLOGIA DOPASOWYWANIA DLA ELASTYCZNYCH ANTEN
Olena Semenova, Andriy Semenov, Stefan Meulesteen, Natalia Kryvinska, Hanna Pastushenko16-22
-
RÓŻNICOWE MAPOWANIE MACIERZY MULLERA SKŁADNIKA POLIKRYSTALICZNEGO TKANEK BIOLOGICZNYCH NARZĄDÓW LUDZKICH
Andrei Padure, Oksana Bakun, Ivan Mikirin, Oleksandr Dubolazov, Iryna Soltys, Oleksandr Olar, Yuriy Ushenko, Oleksandr Ushenko, Irina Palii, Saule Kumargazhanova23-27
-
SELEKTOR POLARYZACJI NA FALOWODACH CZĘŚCIOWO WYPEŁNIONYCH DIELEKTRYKIEM
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova28-31
-
FUNKCJONALNIE ZINTEGROWANY PRZYRZĄD DO POMIARU TEMPERATURY
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Marharyta Rozhdestvenska, Halyna Lastivka32-37
-
BADANIA PROCESU KONTROLI OZONU Z WYKORZYSTANIEM CZUJNIKÓW ELEKTRONICZNYCH
Sunggat Marxuly, Askar Abdykadyrov, Katipa Chezhimbayeva, Nurzhigit Smailov38-45
-
OPTYMALIZACJA FARM WIATROWYCH: PORÓWNAWCZE ZWIĘKSZENIE WYDAJNOŚCI W WARUNKACH NISKIEJ PRĘDKOŚCI WIATRU
Mustafa Hussein Ibrahim, Muhammed A. Ibrahim, Salam Ibrahim Khather46-51
-
STEROWANIE MPPT SYSTEMU PV: ANALIZA PORÓWNAWCZA ALGORYTMÓW P&O, INCCOND, SMC I FLC
Khoukha Bouguerra, Samia Latreche, Hamza Khemlche, Mabrouk Khemliche52-62
-
15-POZIOMOWY ASYMETRYCZNY FALOWNIK WIELOPOZIOMOWY OPARTY NA TECHNOLOGII DSTATCOM POPRAWIAJĄCY JAKOŚĆ ZASILANIA
Panneerselvam Sundaramoorthi, Govindasamy Saravana Venkatesh63-70
-
SYMULACJA KOMPUTEROWA ZWARCIA TRANSFORMATORA NADPRZEWODNIKOWEGO
Leszek Jaroszyński71-74
-
STEROWANIE ZORIENTOWANE POLOWO DLA SILNIKÓW INDUKCYJNYCH OPARTE NA SZTUCZNEJ INTELIGENCJI
Elmehdi Benmalek, Marouane Rayyam, Ayoub Gege, Omar Ennasiri, Adil Ezzaidi75-81
-
BADANIE ZMIAN POZIOMU BEZPIECZEŃSTWA SIECI W OPARCIU O PODEJŚCIE KOGNITYWNE
Olha Saliieva, Yurii Yaremchuk82-85
-
WYKORZYSTANIE UCZENIA MASZYNOWEGO W SYSTEMACH WYKRYWANIA WŁAMANIA DO SIECI
Ahmad Sanmorino, Herri Setiawan, John Roni Coyanda86-89
-
WYKORZYSTANIE WEKTORÓW WSPIERAJĄCYCH DO ZBUDOWANIA OPARTEGO NA REGUŁACH SYSTEMU WYKRYWANIA ZŁOŚLIWYCH PROCESÓW W RUCHU SIECIOWYM ORGANIZACJI
Halyna Haidur, Sergii Gakhov, Dmytro Hamza90-96
-
WYODRĘBNIANIE PAR EMOCJA-PRZYCZYNA: METODOLOGIA OPARTA NA BiLSTM
Raga Madhuri Chandra, Giri Venkata Sai Tej Neelaiahgari, Satya Sumanth Vanapalli97-103
-
UDOSKONALENIE α-PARAMETERYZOWANEJ METODY PRZEKSZTAŁCENIA RÓŻNICZKOWEGO Z OPTYMALIZATOREM DANDELION DO ROZWIĄZYWANIA RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH
Mustafa Raed Najeeb, Omar Saber Qasim104-108
-
METODA ADAPTACYJNEGO KODOWANIA STATYSTYCZNEGO Z UWZGLĘDNIENIEM CECHY STRUKTURALNE OBRAZÓW WIDEO
Volodymyr Barannik, Dmytro Havrylov, Serhii Pantas, Yurii Tsimura, Tatayna Belikova, Rimma Viedienieva, Vasyl Kryshtal109-114
-
OPTYMALIZACJA PROGNOZOWANIA SZEREGÓW CZASOWYCH: WYKORZYSTANIE MODELI UCZENIA MASZYNOWEGO W CELU ZWIĘKSZENIA DOKŁADNOŚCI PREDYKCYJNEJ
Waldemar Wójcik, Assem Shayakhmetova, Ardak Akhmetova, Assel Abdildayeva, Galymzhan Nurtugan115-120
-
SYNCHRONIZACJA ZARZĄDZANIA STEROWANEGO ZDARZENIAMI PODCZAS GROMADZENIA DANYCH
Valeriy Kuzminykh, Oleksandr Koval, Yevhen Havrylko, Beibei Xu, Iryna Yepifanova, Shiwei Zhu, Nataliia Bieliaieva, Bakhyt Yeraliyeva121-129
-
UKŁAD INTERFEJSU A WYDAJNOŚĆ PRZYSWAJANIA INFORMACJI W PROCESIE UCZENIA SIĘ
Julia Zachwatowicz, Oliwia Zioło, Mariusz Dzieńkowski130-135
-
ZAUTOMATYZOWANY SYSTEM ZARZĄDZANIA WODĄ Z PROGNOZOWANIEM ZAPOTRZEBOWANIA OPARTYM NA SZTUCZNEJ INTELIGENCJI
Arman Mohammad Nakib136-140
-
SCHEMATY UML SYSTEMU ZARZĄDZANIA STANOWISKAMI UTRZYMANIA
Lyudmila Samchuk, Yuliia Povstiana141-145
-
PRZEWIDYWANIE WAGI DEFEKTU KODU NA PODSTAWIE UCZENIA ZESPOŁOWEGO
Ghada Mohammad Tahir Aldabbagh, Safwan Omar Hasoon146-153
-
NIEDROGA RZECZYWISTOŚĆ ROZSZERZONA W CHIRURGII KRĘGOSŁUPA: BADANIE EMPIRYCZNE DOTYCZĄCE POPRAWY WIZUALIZACJI I DOKŁADNOŚCI CHIRURGICZNEJ
Iqra Aslam, Muhammad Jasim Saeed, Zarmina Jahangir, Kanza Zafar, Muhammad Awais Sattar154-163
Archiwum
-
Tom 15 Nr 3
2025-09-30 24
-
Tom 15 Nr 2
2025-06-27 24
-
Tom 15 Nr 1
2025-03-31 26
-
Tom 14 Nr 4
2024-12-21 25
-
Tom 14 Nr 3
2024-09-30 24
-
Tom 14 Nr 2
2024-06-30 24
-
Tom 14 Nr 1
2024-03-31 23
-
Tom 13 Nr 4
2023-12-20 24
-
Tom 13 Nr 3
2023-09-30 25
-
Tom 13 Nr 2
2023-06-30 14
-
Tom 13 Nr 1
2023-03-31 12
-
Tom 12 Nr 4
2022-12-30 16
-
Tom 12 Nr 3
2022-09-30 15
-
Tom 12 Nr 2
2022-06-30 16
-
Tom 12 Nr 1
2022-03-31 9
-
Tom 10 Nr 4
2020-12-20 16
-
Tom 10 Nr 3
2020-09-30 22
-
Tom 10 Nr 2
2020-06-30 16
-
Tom 10 Nr 1
2020-03-30 19
##plugins.themes.bootstrap3.article.main##
DOI
Authors
Abstrakt
Zagadnienie odwrotne dotyczące identyfikacji sztywnych powierzchni obiektów rozpraszających sformułowanych w dziedzinie częstotliwości została przedstawiona w tej pracy. Wskazano na różnice w identyfikacji obiektów wklęsłych jak na przykład typu kite i wypukłych (okrąg). Skoncentrowano uwagę czytelnika na konwencjonalnej metodzie elementów brzegowych z oszczędną dyskretyzacją oraz ilością czujników pomiarowych co ma istotne znaczenia dla zagadnień odwrotnych.
Słowa kluczowe:
Bibliografia
[1] Abramowitz M., Stegun I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. John Wiley, New York 1973.
[2] Akylas T. R., Mei C. C.: I-campus project School-wide Program on Fluid Mechanics Modules on Waves in fluids. Chapter Five of Reflection, Transmission and Diffraction [http://web.mit.edu/fluids-modules/waves/www/ c-index.html].
[3] Baynes A. B.: Scattering of low-frequency sound by compact objects in underwater waveguides. PhD Dissertation. Naval Postgraduate School, Monterey, California 2018.
[4] Becker A. A.: The boundary Element Method in Engineering. A complete course. McGraw-Hill Book Company 1992.
[5] Cakoni F., Colton D.: A Qualitative Approach to Inverse Scattering Theory. Applied Mathematical Sciences 188. Springer 2014. DOI: https://doi.org/10.1007/978-1-4614-8827-9
[6] Colton D., Kress R.: Integral Equation Methods in Scattering Theory. Springer 1993.
[7] Jabłoński P.: Engineering Physics – Electromagnetism. Częstochowa University of Technology 2009.
[8] Jeong C., Na S.-W., Kallivokas L. F.: Near-surface localization and shape identification of a scatterer embedded in a halfplane using scalar waves. Journal of Computational Acoustics 17(3), 2009, 277–308. DOI: https://doi.org/10.1142/S0218396X09003963
[9] Kirkup S., The Boundary Element Method in Acoustics: A Survey. Applied Sciences 9(8), 2019, 1642 [https://doi.org/10.3390/app9081642]. DOI: https://doi.org/10.3390/app9081642
[10] Kirkup S.: The Boundary Element Method in Acoustics. Book in Journal of Computational Acoustics 2007.
[11] Li P., Wang Y.: Numerical solution of an inverse obstacle scattering problem with near-field data. Journal of Computational Physics 290, 2015, 157–168. DOI: https://doi.org/10.1016/j.jcp.2015.03.004
[12] Lynott G. M.: Efficient numerical evaluation of the scattering of acoustic and elastic waves by arrays of cylinders of arbitrary cross section. Thesis of Doctor of Philosophy. University of Manchester, School of Natural Sciences, Department of Mathematics, 2020.
[13] Rymarczyk T.: Tomographic Imaging in Environmental, Industrial and Medical Applications. Innovatio Press Publishing Hause, Lublin 2019.
[14] Sikora J.: Boundary Element Method for Impedance and Optical Tomography. Warsaw University of Technology Publishing Hause, Warsaw 2007.
##plugins.themes.bootstrap3.article.details##
Abstract views: 398

